
Detailed Radiation Fault Modeling of the
Remote Exploration and Experimentation (REE)

First Generation Testbed Architecture1

1 07803-5846-5/00/$10.0 © 2000 IEEE

John Beahan
Jet Propulsion Laboratory

4800 Oak Grove Dr
Pasadena, CA 91109

818-356-0469
John.Beahan@jpl.nasa.gov

Larry Edmonds
Jet Propulsion Laboratory

4800 Oak Grove Dr
Pasadena, CA 91109

818-354-2778
Larry.D.Edmonds@jpl.nasa.gov

Robert D. Ferraro
Jet Propulsion Laboratory

4800 Oak Grove Dr
Pasadena, CA 91109

818-354-1340
Robert.D.Ferraro@jpl.nasa.gov

Allan Johnston
Jet Propulsion Laboratory

4800 Oak Grove Dr
Pasadena, CA 91109

818-354-6425
Allan.H.Johnston@jpl.nasa.gov

Daniel S. Katz
Jet Propulsion Laboratory

4800 Oak Grove Dr
Pasadena, CA 91109

818-354-7359
Daniel.S.Katz@jpl.nasa.gov

Raphael R. Some
Jet Propulsion Laboratory

4800 Oak Grove Dr
Pasadena, CA 91109

818-354-3055
Rsome@jpl.nasa.gov

Abstract--The goal of the NASA HPCC Remote Exploration
and Experimentation (REE) Project is to transfer
commercial supercomputing technology into space. The
project will use state of the art, low-power, non-radiation-
hardened, Commercial Off-The-Shelf (COTS) hardware
chips and COTS software to the maximum extent possible,
and will rely on Software-Implemented Fault Tolerance
(SIFT) to provide the required levels of availability and
reliability. In this paper, we outline the methodology used
to develop a detailed radiation fault model for the REE
Testbed architecture. The model addresses the effects of
energetic protons and heavy ions which cause Single Event
Upset (SEU) and Single Event Multiple Upset (SEMU)
events in digital logic devices and which are expected to be
the primary fault generation mechanism. Unlike previous
modeling efforts, this model will address fault rates and
types in computer subsystems at a sufficiently fine level of
granularity (i.e., the register level) that specific software and
operational errors can be derived. We present the current
state of the model, model verification activities and results
to date, and plans for the future. Finally, we explain the
methodology by which this model will be used to derive
application-level error effects sets. These error effects sets
will be used in conjunction with our Testbed fault injection
capabilities and our applications’ mission scenarios to
replicate the predicted fault environment on our suite of
onboard applications.

1. INTRODUCTION

NASA’s future spaceborne science missions are evolving in
directions that will require substantial onboard computing
capabilities for both near earth and deep space exploration.

Downlink bandwidth limitations and excessive round trip
communication delays are motivating the increased use of
onboard computing to enhance the science value of missions
and, in some cases, to enable the missions themselves.
Projects such as the Gamma Ray Large Area Space
Telescope (GLAST), the Next Generation Space Telescope
(NGST) and autonomous rovers being designed for Mars
exploration in the next millennium already require some
onboard computing capabilities to either enable or to greatly
enhance their baseline missions. The difficulty NASA is
encountering is that radiation hardened components are both
extremely expensive and lag several generations behind the
commercial state of the art. The Remote Exploration and
Experimentation (REE) Project is working to mitigate this
problem by migrating ground based commercial scalable
computing technologies into space in a timely and cost
effective manner. The approach being taken is to exploit a
comprehensive architectural strategy that incorporates a
custom, but architecturally insensitive, Software
Implemented Fault Tolerance (SIFT) middleware layer, as
well as a generic library of Algorithm-Based Fault
Tolerance (ABFT) techniques, to enable the direct use of
latest generation commercial hardware and software
components in future space systems. This strategy will
allow high throughput computation even in the presence of
relatively high rates of radiation induced transient upsets as
well as in the presence of permanent faults. A First
Generation Testbed, equipped with fault injection
capabilities, is being constructed out of COTS hardware and
software to test these concepts.

Unlike the development of a system composed of radiation
hardened components, in which the baseline technology and

the circuitry are designed to be insensitive to the worst case
expected radiation environment, the development of an
efficient SIFT based system requires a high fidelity, realistic
radiation effects model. Further, SIFT development requires
an accurate and validated fault to error translation model as
well as an error propagation model. The reasons for these
requirements are due to the nature of a SIFT system in
which the fault (i.e., the physical, hardware-level effect) is
not prevented as it is in a radiation hardened computer, but
rather is allowed to occur. The error (the logical
manifestation of the fault as seen by the system or software)
or a subsequent manifestation due to propagation of the
error is then detected and handled by the SIFT software.
Clearly, the design of such a system is dependent on a
detailed understanding of the types of faults which will
occur, the errors generated by these faults and the rate at
which they will appear. Armed with this information, an
efficient SIFT system may be designed. Here, efficient
refers to the notion that over-design of the system is
wasteful in power/performance and, in a spacecraft
environment, is almost as bad as an under-designed system
in which the faults are not detected and handled in a timely
manner, resulting in poor throughput, reliability and
availability.

In the case of the REE system, there are several additional
characteristics which allow the design of a machine with
exceptional power/performance ratio (for a space based
computer), but which also require complete, thoroughly
validated, high fidelity fault/error models.

1— The REE system is not intended for use in high
radiation environments such as the Van Allen Belts or the
Jovian System. This is key to the ability to use non-radiation
hardened components, and thus gain a two to three
generation advantage over available radiation hardened
flight computers.

2— The REE system is being designed primarily for the
processing of science data, rather than hard (vs. soft) real
time, mission critical, spacecraft control functions. Thus,
occasional resets, processing delays, and possibly even
dropped frames or other service interruptions are acceptable.
The advantage here is that we can use non-replicated fault
tolerance techniques with concomitant advantages in
power/performance.

3— The system is intended, with appropriate replication
techniques, such as software implemented triple-modular-
redundancy, to be capable of performing a limited range of
real time tasks. This will be, at least initially, in a segregated
portion of the system which will operate in a relatively poor
power/performance mode (providing only a 2.5 to 3.0
power/performance improvement over available radiation
hardened computers vs the expected 10X improvement in
the rest of the system). This segregation of real time
activities will allow the system to perform these types of
tasks if necessary, but with resultant penalties. In the future,
we plan to investigate the possibility of performing real time

tasks in a minimally- or non-replicated and non-segregated
mode.

The above require that we accurately predict what types of
errors will be generated, under what conditions the system
will become bogged down in error handling, and under what
conditions errors will propagate through the system error
detection and containment boundaries. Detailed error
models will be crucial for the design of appropriate
(efficient) error detection and handling techniques and an
understanding of when and how to invoke them for a given
environment and application software set.

The primary concerns, for the REE environments, i.e., Low
Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO) and
Deep Space, are transient errors induced by natural Galactic
Cosmic Rays (GCR’s) and energetic protons. The principle
faults are single bit flips in memory and registers, though
there is growing concern that transients in clock lines and
non-clocked logic may occur with deep sub-micron feature
sizes [3]. These latter effects may cause significantly worse
faults as they can propagate to large numbers of
bits/registers in an unpredictable and wide ranging manner.
In addition to single bit flips, there is an expectation due to
both analysis and physical evidence of an increasing rate of
multiple bit flips due to shrinking feature sizes [3]. In this
fault mode, several physically adjacent cells may be
disrupted by the passage of a single energetic particle.
Finally, while total dose radiation effects are not believed to
be significant for REE missions in terms of component
performance degradation, there is a concern that long-term
exposure to stresses such as total dose radiation and thermal
cycling may increase SEU susceptibility. Thus it is
important that degradation from long term, low-level
stresses be understood and accounted for.

It is apparent that the key to an appropriate fault tolerance
strategy for the REE system will be an accurate
understanding of the fault environment including fault
rates/types and error propagation modes. Over estimation of
fault rates results in overly conservative design and high
power and throughput penalties. Underestimation results in
unacceptable system availability and failure rates. Similarly,
overlooking even a small number of error types and
propagation modes could have serious deleterious effects in
a fielded system. In order to derive adequate fault/error
detection and handling strategies it is critical to have a high
fidelity fault/error model. To our knowledge, relatively little
work has been done at the required levels of detail,
especially with state of the art, deep submicron COTS
components and with complex modern architectures.

2. PREVIOUS AND RELATED WORK

As stated above, there has been relatively little work done in
the regime of interest. The following is a brief discussion of
the deficiencies in the state of the art:

1— Most experience to date has been with older, larger
feature size devices where faults are localized to memory
and registers [1, 2]. At some point, we expect to see faults in
non-clocked logic, but exactly where this begins to be
manifested is unknown [3, 4]. As we proceed down the
technology curve to 0.10 micron and smaller feature sizes, it
is crucial that we understand where and how these types of
faults begin to occur. It will be critical to develop techniques
to rapidly detect and handle these types of faults, as they
will, doubtless, cause severe (and currently unpredictable)
processing disruption at the node and system levels.

2— Multiple bit errors have occurred infrequently and have
not been a serious issue for most systems. To date, the use
of standard single-error-correcting codes has been adequate
for memory systems fabricated with unhardened
components. As we proceed to the deep sub-micron level,
multiple bit errors will likely be seen both in memory
systems (including caches) and in registers. The overhead
associated with multiple bit correcting codes is substantial
and may, in some cases, be impractical (such as in on-chip
caches). The design of a realistically deployable system
(taking into account realistic power/mass/volume constraints
of space based systems) will require detailed knowledge of
both the probabilities of occurrence and the propagation
characteristics of these fault types.

3— Previous investigations into radiation effects were for
the purposes of worst case analysis and design of so called
‘hard fault tolerant’ systems, based, for the most part, on
hardware implemented fault avoidance and/or tolerance.
The resulting models have been extremely conservative and
would, if used in a SIFT based system, result in over-design
of the system and poor power/performance. It is necessary
that realistic fault/error models be used for SIFT based
designs.

4— Due to the rigors of a SIFT based design, a thorough
and detailed understanding of the component and system
architectures is required for proper execution of the design
and validation tasks. This simply was not previously
necessary and, for the most part, too expensive and difficult
to justify. Further, the systems themselves, i.e., fielded
space based computer systems, were not very complex.
They tended to be single computer systems with relatively
simple processor architectures. There have been no studies
of any systems of the complexity of an REE type system,
i.e., 20 or more state-of-the-art processors connected via a
high speed switched packet network. Finally, while there
have been some attempts to look into the behavior of
distributed processors under fault conditions, we are
unaware of any study of a system approaching the
complexity of a parallel-processing supercomputer, or under
the high fault-rate conditions seen by COTS in space
environments.

The following are some anecdotal examples of recent
studies and their outcomes:

1— Experimental results from the Japanese HITEN space
probe, indicated a lower than expected level of faults in Low
Earth Orbit (LEO), resulting in only a few dozen faults over
a period of several months. The HITEN computer was an
extremely simple processor and memory system of 1980’s
vintage. A fairly detailed model was generated for this
system, yet even this simple system defied correct analysis
(though to be fair, the designers were, once again,
concerned with worst case behavior rather than expected or
probable effects).

2— Some of the most applicable work to date was
performed at Chalmers University, approximately 6 years
ago [5,6]. In this series of studies, a radiation effects fault
model was developed based on single-bit flips applied to a
VHDL gate-level simulation of a RISC CPU. The single-
bit-flip model was previously validated experimentally
using a radioactive Californium source to irradiate a similar
physical device. Detailed analysis of single-bit faults
injected in to simulated devices was performed. Comparing
the outcomes of radiation based fault injection and VHDL
model simulated fault injection against what could be
achieved using only software-implemented fault injection
on unmodified computing hardware, it was determined that
software methods were capable of emulating 98-99% of all
single-bit fault effects for the candidate architecture. These
results provide an indication that it is possible, without the
addition of special fault-injection hardware, to simulate the
effects of the large majority of bit flip faults in RISC
architectures. While this work is arguably some of the most
creative and original work done in the field, it was never
validated in space based experiments. It is also not apparent
that the Californium source is equivalent to naturally
occurring space radiation in terms of energy deposited,
angle of deposition, or SEU effect. And finally, the
architectures being tested in this manner were simple
compared with modern systems. Even so, the experiments
remain, in our opinion, some of the best performed to date
in attempting to obtain high fidelity models for the purpose
of understanding error generation and propagation for fault
tolerance analysis.

3— Perhaps one of the best recent examples of the radiation
effects characterization of a commercial component were
the recent heavy ion experiments performed on the Power
PC 603e which characterized faults in the processor register
set and internal caches [9]. While useful for worst case
analysis and to obtain general SEU susceptibility data, there
is insufficient detail to provide a clear understanding of
what errors were seen in the various functional blocks of the
device or how they might be manifest under actual operating
conditions. This data was, however, useful in generating our
‘first cut’ models in that, when combined with additional
information on the device architecture and layout, a
reasonable set of estimations could be made regarding
probable fault modes and error effects.

3. FAULT EFFECTS MODELING AND DESIGN

METHODOLOGY

The development of the fault-tolerant REE multicomputer
will require several activities to be carried out as part of a
unified fault modeling and system development
methodology, including:

1— Building a low-level fault model for the hardware,

2— Verifying the model experimentally with ground and
flight radiation tests,

3— Building system and software-level error
generation/propagation models,

4— Verifying those models experimentally,

5— Performing fault injection experiments on both the
hardware and software during development to guide the
design process, and finally

6— Validating that the developed system will operate
correctly under expected radiation conditions.

Because of the fact that many of the listed activities will
take extended periods of time, many of the modeling and
verification processes must be done in parallel with the
system development (see Figure 1). We are therefore
developing a set of initial fault and error models and a
software-based fault injection facility. These will be used
for experimentation to guide development, both to emulate
space radiation conditions, and to perform sensitivity studies
with specific types of faults injected, at accelerated rates,
into specific hardware and software targets, under controlled
computing-load conditions.

Ground Exp’t 1: Verify
& Revise Fault Model

Build Initial Low-
Level Fault Model

Ground Exp’t 2: Verify
& Revise Error Model

Build Initial High-
Level Error Model

System Design and Development Activities...

Flight Exp’t 2: Verify
& Revise Error Model

Flight Exp’t 1: Verify
& Revise Fault Model

Time

Low-Level Fault
Injection Experiments

High-Level Fault
Injection Experiments

High-Level Fault
Injection Experiments

High-Level Fault
Injection Experiments

Low-Level Fault
Injection Experiments

Low-Level Fault
Injection Experiments

Exp’t Results

Design Feedback Design Feedback Design Feedback

Exp’t Results Exp’t Results

Figure 1: Fault Modeling and System Development Methodology

In general, the prediction of faults is difficult, requiring in-
depth analysis of semiconductor and radiation physics. The
conversion of the fault to an error and the analysis of error
propagation is, by comparison, somewhat simpler. Our
strategy is to emulate radiation faults in COTS CPUs,
memories and other components. Previous software based
fault injector developments and associated studies indicate
that this is a reasonable and relatively straightforward
approach and should be sufficient for early studies prior to
physical irradiation experiments. The least studied and
potentially most significant area of software fault emulation
is that of caches (especially on-chip caches), and Memory
Management Units (MMU). To our knowledge, there have
as yet been no detailed modeling or experimentation
regarding the effects of radiation on caches or virtual
memory hardware, and these may be potentially problematic
because of the ease with which single faults could propagate
to cause multiple errors. Our initial fault modeling effort
therefore concentrates on cache and MMU fault effects.

4. MODELING ASSUMPTIONS:

The assumptions we are using for this fault modeling and
system development methodology include:

Faults are primarily caused by Single-Event Upsets (SEUs)
due to heavy ions from the Galactic Cosmic Ray
background, and energetic protons from the solar wind or
trapped radiation belts. Single-Event Multiple Upsets are
relatively rare. For this phase of the study, we assume that
Single-Event Latchup effects will be extremely rare, and
non-destructive when they do occur, due to the prevalence
of epitaxial layers in chips. They are therefore ignored at
this time and will be considered in a subsequent model
enhancement.

Faults are grouped into two types:

Latch faults, including latches, flip-flops, memory cells, and
any other structure that persistently stores a bit. ‘Visible’
latches are included, such as data registers, as are ‘invisible’
latches, which are used to implement structures such as
instruction pipeline stages and processor register reservation
scoreboards.

Gate faults, which occur when a SEU event happens at
approximately the same time period as a clock transition,
causing the gate to flip its effective bit value.

Due to the tight timing required for a gate fault to propagate
to, and be latched by, a register, faults in latches are 10’s of
thousands of times more likely than faults in gate level, or
combinatorial logic. As clock rates increase, this difference
will shrink, due to the increased fraction of time available
for combinatorial logic to present erroneous values to
registers which may then latch these transients. This is
owing to the fact that, as clock rate rises, the number of
latching windows increases faster than the width of each
window decreases. [Clock line faults, in which a SEU
induced transient on a clock line may cause one or more
registers to latch at an incorrect time, possibly latching an
incorrect value from the associated combinatorial logic
feeding the register data input lines, are treated separately
and discussed in a later section of this paper.] Future
experimentation will validate and further quantify
assumptions.

Single-bit errors in RAM and L2 cache are estimated, but
will be corrected by EDAC, and so are not brought up to the
system level. Multiple-bit faults are initially assumed to be
100,000 times less likely than single-bit faults. We believe
this to be a relatively conservative estimate. An exact

Poisson rate calculation will be performed, and validated at
a later date.

Single Event Functional Interrupts (SEFI) faults, which are
defined as any interruption of the function of a device such
as an SEU-induced mode-change from standard operational
mode to test mode in a DRAM, are assumed, for this initial
modeling activity, to be only a small subset of errors caused
by faults. Future physical experimentation will validate and
further quantify this assumption.

5. FAULT MODEL STRUCTURE

The methodology we are employing uses a multi-layered
model for radiation effects, and is divided into two main
sections (see Figure 2). The bottom section is composed of
two layers, and models the initial occurrence of faults. The
lowest layer is termed the physical level model, and
calculates the effects of radiation at the level of individual
latches and gates. It takes into account (a) the space
radiation environment and (b) the geometry, feature size and
material composition of the semiconductor technology. The
second layer is called the design level model, and takes into
account the number of gates and the number of bit storage
elements in each chip, including latches, flip-flops, memory
cells, etc. and derives an expected rate of faults that will be
experienced by each device. For simplicity, in this
document we refer to the different kinds of bit-storage
elements using the generic term latches. The level of detail
that is available about the number of latches and gates in
each functional unit within a device will determine how
closely the fault model can predict the location, frequency
and effects of faults within the device.

Physical Model -- space environment & semiconductor physical properties and geometry

Design Model -- gate count & number of latches, memory cells, flip-flops

Functional Model -- canonical “ eigenerrors” for components, subsystems and system

Error Model -- software- and time-dependencies & emulation of “ eigenerrors” for SWIFI

Figure 2: Layered Fault Model

Excepting the physical radiation effects characterization
work being performed to enable the modeling activity, only
software-based fault injection is being used for the REE
development. This is partly because of the desire to use
COTS board-level hardware systems as development
platforms, and partly because we feel it is a safe and cost-
effective approach. This software fault injection approach
means that many classes of faults must be emulated at the
software level, in particular those due to errors in caches and
the MMUs, since no route exists for injecting faults into the
caches, TLB’s or other related modules. The upper half of
our model is devoted to modeling the error effects on the

software, and on the operation of the integrated
hardware/software system, that will result from radiation
faults. This level also addresses issues associated with
effective software emulation of hardware faults.

The upper half of the multi-layered fault model is also
composed of two layers, the lower of which is a functional
level model of the system. It categorizes all the possible
error behaviors of all its modules, devices, subsystems and
itself as a whole into a few classes called eigenerrors. The
uppermost layer of the fault model is the error level, in
which parameterized models of the software and data being

run by the system are integrated with the preceding
hardware models to predict the rates of the different
eigenerrors in the operational system. These rates can then
be used as inputs to the fault injectors used to evaluate
reliability and performance in the various system designs
being analyzed.

A detailed description of the model follows. Note that
initial versions of only the physical level and design level
have been developed so far. Work is still in progress on the
functional and error level models, as well as continuing
refinement of the model’s lower levels.

Physical Level (initial version completed)

1— A space environment factor is used to adjust fault rates
to the desired mission conditions. This factor accounts for
the distribution of particles and the radiation flux density
present. Due to differences in the effects of protons vs.
heavy ions, multiple space environment factors are used.
Each chip has an environmental factor set to accommodate
the effects of local shielding.

2— A technology factor is used to adjust for changes in
fault rate properties due to changes in semiconductor
materials and fabrication. Each chip has an individual
parameter.

3— A per-latch fault rate is used to capture the device-level
likelihood that a single latch (flip-flop) will experience a
single bit-flip fault. Each type of chip has an individual
parameter to account for multiple technologies being used in
the system design.

4— A per-gate fault rate is used to capture the device-level
likelihood that a single gate will experience a single bit-flip
fault. Each type of chip has an individual parameter.

Design Level (initial version completed)

5— Each chip is modeled parametrically in terms of latches,
and latch faults (single bit-flips) are estimated thereby.

6— Large chips are also modeled in terms of number of
gates, either with specific gate counts or approximation
using percentage of chip area, and gate faults (single bit-
flips) are estimated thereby.

Functional Level (under construction)

7— The functional modules of each device are examined to
determine the effects on their behavior resulting from faults.
This includes both faults that occur internally, and faults
that are fed in as inputs.

8— Each device is examined as a discrete functional entity
to determine the effects on its behavior resulting from faults.

This includes both faults that occur internally, and faults
that are fed in as inputs.

9— A set of subsystems consisting of two or more devices,
which may or may not be disjoint, are examined to
determine the effects on their behavior resulting from
internal and input faults.

10— The system as a discrete functional entity is examined
to determine the effects on its behavior resulting from faults.

11— The spectrum of possible error behaviors, at the
module, device, subsystem and system level, are grouped
into classes that have substantially similar effects, called
eigenerrors. These sets of eigenerrors will apply to all of,
or some portions of, the system.

Error Injection Level (under construction)

12— The duty cycle of each functional module is
parameterized (load-dependent)

13— The percent utilization and state of each functional
module is parameterized (load-dependent)

14— The fraction of each of the various eigenerrors likely
to result from the faults in various locations in each module,
device and subsystem are modeled

15— The rate of each type of eigenerror is modeled. This
result constitutes a high fidelity input to a Fault Injector

6. INITIAL PHYSICAL LEVEL FAULT MODEL

Space Environments

For this study we examined two mission orbit profiles
relevant to the expected domain under which COTS parts
might be used:

1— Geosychronous or deep-space applications, where the
environment is dominated by galactic cosmic rays (GCR)
and occasional solar flares. The solar flares contain high-
energy protons as well as heavy charged particles, and occur
at random times. The GCR flux for space missions near the
earth or close to the sun is modulated by the solar cycle, and
is about four times lower during peak solar activity (solar
maximum) compared to solar minimum conditions.

2— A low-inclination (≈ 28°) low-earth orbit (600 km)
where the GCR flux is heavily shielded by the earth’s
magnetic field, and the only significant effect is from
protons in the earth’s Van Allen belts. Solar flares have
little effect on the radiation level in this orbit. The proton
flux increases when the spacecraft goes through the South
Atlantic Anomaly (SAA). Although high inclination (polar)
orbits have not yet been considered, the polar portion of the

flight is similar, in increased proton flux and concomitant
SEU rate increase, to that of the SAA in a low inclination
orbit.

GCR and proton spectra were determined for these orbits
using the AP-8 and CREME96 models [Ref. 7], assuming an
external 100-mil aluminum shield surrounds all of the
electronics of interest. These spectra were used to estimate
the error rate (orbit averaged for the LEO case), as described
in the following subsection.

Semiconductor Technology Model

The baseline semiconductor technology used to estimate
error rates was a 0.18 µm epitaxial CMOS process, which is
the process that is currently being used to produce high-
performance microprocessors. The power supply voltage is
assumed to be 2 V. In the future we will extend the analysis
to include more advanced technologies, including an SOI
process with 0.12 µm and smaller feature sizes.

Although no radiation effects data exists (to our knowledge)
for devices fabricated in this process, it is possible to use
scaling algorithms from the semiconductor and space
radiation effects communities to determine how advances in
device technology will affect the error rate of registers and
other internal storage elements. The unknown factor is how
transients in high-speed internal logic, which is a large part
of a microprocessor chip, will be affected by scaling. One
would normally expect the upset sensitivity to increase as
devices are scaled because the critical charge required to
upset the cell decreases with scaling. However, the cell area
also decreases, and the issue of how scaling affects upset is
far more complicated than indicated by elementary scaling
calculations based on constant voltage or field. The upset
rate for the calculations in this paper are based on scaling
algorithms of Reference 11, along with radiation test results
for the PC603e processor [9]. The initial analyses assume
that logic errors are unlikely to occur because nearly all of
the logic is clocked.

The dependence of upset on linear energy transfer (LET)
was determined by first assuming a threshold LET of 0.02
pC/µm. Commercial microprocessors have had threshold
LETs near that value over approximately a ten-year time
period, even though feature sizes have decreased by more
than a factor of ten as devices evolved [11]. The cross
section was assumed to rise sharply to a saturation value
that is related to the drain area, but allows for lateral charge
collection from ions that strike near the sensitive drain
region. The error rate was determined by integrating the
GCR spectrum with the linear-energy transfer curve,
allowing the angular dependence to extend to angle of 60°.
The effective LET was assumed to scale with the secant of
the incident angle out to that angle; for higher angles charge
collection was assumed to be shared by several adjacent
cells. A similar approach was used for protons, taking the
proton spectrum and the spectrum of recoil products into

account. The result of these calculations is an error rate for
registers and other storage elements.

Multiple-bit faults were estimated by first considering
experimental results for older memory technologies, which
show that about 0.1% of the faults from high-energy
particles produce multiple errors, and then estimating the
multiple-bit rate for more advanced structures by taking the
dimensions of the device structure into account. These
calculations indicate that the number of multiple-bit errors
will increase to 1-2% of the total number of faults for highly
scaled devices, and that it is possible for 10 or more errors
to occur for some geometrical paths [11]. While highly
scaled devices are predicted to show this increase in faults,
the exact nature of the increase or when it will begin to be
manifested is uncertain and will be one of the research
topics undertaken in the radiation testing and
characterization portion of this project.

Circuit Design and Architecture

The error rate depends on software, circuit design and
device architecture as well as the inherent sensitivity of
individual storage elements. Clock tree faults were
considered separately from register, memory and logic
faults. Internal CPU L1 Cache fault rates were considered
separately from register faults, because cache faults depend
heavily on applications. They can also be tested
independently of register faults.

The main uncertainty is that of estimating gate-level faults.
Although the critical charge required to switch logic circuits
is low enough to allow failures from heavy ions to occur, all
logic is clocked, which makes the circuit sensitive to upsets
only during the short period in which a clock transition
occurs. Clocks in advanced microprocessors are very
complex, and are designed to minimize skew and ensure
low noise throughout the clock distribution network.
Therefore it is reasonable to assume that no SEU errors will
occur within the clock. The gate fault rate can be
approximated by first considering the clock rate, and
making some basic assumptions about the time interval in
which latches or random logic will be sensitive to logic
upset. At very high clock rates this approach may break
down because the time interval over which charge from an
SEU strike is collected may extend to about 0.5 ns, but it is
probably a good assumption for clock speeds below 1 GHz.

Although registers are sensitive to upset at low LET, the
cross section near threshold is also quite low. The cross
section typically increases by three or more orders of
magnitude until the LET is about 6 times greater than the
threshold value. These results suggest that logic faults,
which require a sustained single-level input signal or rapid
transition, will have a significantly higher LET than register
faults.

The gate-fault rate also depends on the fraction of gates in
the logic tree that are sensitive to upsets (only some of the
gates are used in ways that will affect the processor) as well
as in the logic configuration and logic state. The net
sensitivity of a processor to logic errors depends on three
factors: (1) the logic transition time interval, (2) the LET
threshold of the logic elements, and (3) the logic
configuration and use. A conservative estimate of the first
two factors reduce the upset rate of logic by a factor of
about 10-3 compared to that of registers. The third factor is
difficult to estimate, but probably reduces the overall rate by
at least another factor of 100. The net result is that we
estimate the gate fault rate is about 10-5 times that of the
register fault rate.

7. INITIAL DESIGN LEVEL FAULT MODEL

The REE First Generation Testbed (FGT) is a 20 node, 40
processor multicomputer. It is being designed and
manufactured by Sanders, a Lockheed Martin Company,
and is a homogeneous instantiation of the Air Force
Research Lab’s ISAC (Improved Space Architecture
Concept) Program architecture. The principle concern, from
a fault tolerance as well as operational perspective is to
understand and limit the potential for fault propagation
through the system. A distributed-memory architecture (as
opposed to a shared memory architecture) was chosen for
this first instantiation of an REE system. In future testbeds,
we may reexamine shared memory architectures and other
design choices.

The FGT is a homogeneous system comprising 20 identical
nodes. Each node consists of:

• 2 Power PC 750 Processors, each with 1MB of L2
Cache

• 128 MB of sharable main memory
• 1 PCI bridge
• 1 Node Controller comprising:

1 StrongARM SA-110 Processor
4 MB memory
2 Myrinet interfaces providing 1.2Gb/s of bi-

directional I/O
1 8-port Myrinet switch
Boot Flash holding a Lynx real-time OS kernel and

boot code
The node controller provides communication and overall
node control for the node in this two level architecture. All
communication is via the Myrinet network fabric.

REE Node

PCI

Myrinet
I/F

(Primary)

EDAC DRAM
Memory

PowerPC-750 PowerPC-750

L2 Cache L2 Cache

Bridge Chip

Non-Volatile
Memory

Myrinet
I/F

(Redundant)

Myrinet
8-Port Switch

External Myrinet Ports

Node Controller

Figure 3: REE Node

A flight system, which is expected to be prototyped starting
in 2002, will utilize then state-of-the-art COTS technology
and may incorporate system-on-a-chip features, single-chip
memory systems and any other advances made between
now and then. The design level model for this
implementation will need to be adapted for the CPU,
interconnect mesh, and node/system architectures chosen for
the flight system.

8. CURRENT RESULTS

We have modeled the projected fault rates using the REE
First Generation Testbed (FGT) as a test case architecture
for the two mission orbit profiles discussed earlier, under
nominal and solar flare conditions.
Table 1 below shows the estimated register fault rate for the
geosychronous/deep space orbit and low-inclination LEO
orbit that was discussed earlier. These estimates apply to
the baseline 0.18 µm epitaxial CMOS process, which is
assumed to be the dominant process used in the components
from which the FGT is fabricated. The “design-case” solar
flare is taken from internal work done by JPL in 1992 that
makes a more realistic assumption than the assumption of a
worst-case flare, which is extremely unlikely and severely
overestimates the effects of solar flares. An external 100-
mil aluminum shield is assumed, which has little effect on
the GCR flux, but affects the solar flare component.

Table 1. Calculated Error Rates for Two Mission
Scenarios

Mission Flare Condition Faults per
Bit-Day

none 3 x 10 -5Deep Space /
GEO design case 3 x 10 -2

none 2 x 10 -4LEO

(28 °, 600 km) design case 2 x 10 -4

Using these bit error rates, estimated fault rates are obtained
by using the design level models. Several tables of results
follow. Table 1 shows estimated fault rates for the FGT in
low-inclination LEO. Note that the rates are the same for
both nominal and solar flare activity, due to the Van Allen
Belts shielding. Table 2 shows estimated fault rate for the
FGT in the deep space/GEO environment under nominal
solar activity. Table 3 projects the fault rate in that same
environment during the occurrence of a design case solar
flare. Each table breaks out faults by major components of
a system node. Note that our model predicts that the
projected gate faults rates in all cases are irrelevant
compared to the latch fault rates for this technology. Note
also that our model predicts that faults originating from the
CPUs will be dominant in terms of number compared to all
other components, by a factor of 5. Table 5 collects the
CPU and node controller (NC) fault data into a single place
for comparison.

If these model estimates turn out to be correct, operation in
deep space or GEO will be problematic during solar flares.

This fault rate turns out to be approximately 17 per minute
per CPU. This rate will be mitigated somewhat by the fact
that faults at many points in the system, such as the CPU
general registers, have a high likelihood (~50%) of being
overwritten before affecting the system behavior. But the
error rate resulting from this fault rate may still turn out to
be too high to handle by normal software implemented fault
tolerance techniques. Since shielding is effective against
solar flares, it may be necessary to increase the shielding for
missions which need to operate though these kinds of
events. In other cases, it may be necessary to shut down the
system during the event.

On the other hand, the fault rates for nominal solar
conditions, and for LEO are predicted to be extremely
benign. Preliminary experiments with a prototype SIFT
system and candidate science application have been carried
out at fault rates much higher than these. In fact, we have
done experiments with a simulated fault rate as high as 2 per
minute on a scene classification application, with forward
progress still being made.

As mentioned earlier, we have assumed in this model that
the main memories and L2 caches are SECDED protected.
So the faults reported for those components in Tables 2 – 4
are for double bit errors under conditions of slow scrubbing
(approx every 20 minutes). Table 6 gives the predicted
single bit fault rates for those components which would be
caught and corrected by scrubbing. It is obvious that EDAC
protection on the main memory and the L2 caches is
essential in reducing the fault rate to a manageable level. In
particular, an unprotected L2 cache would result in 10 times
the faults of the CPU itself.

Table 2: Fault Rate Estimates for FGT in LEO mission conditions

Parameters Latch
Faults/day

Gate
Faults/day

Total
Faults/day

System totals: 8,065 0.67 8,066

Number of nodes per system 20

Additional system-level elements 7.7 0.00 7.7

Additional Network Switches per system 20 96 0.00 96

Totals per node: 398 0.03 398

Number of CPU's per node 2 334 0.03 334

Size of RAM per CPU, Mbytes 64 1.1 1.1

Size of L2 cache per CPU, Mbytes 1 0.02 0.02

Node Controller (NC) CPU 47 0.00 47

Size of NC RAM, Mbytes 4 0.07 0.07

Bus controller (PCI) 3.9 0.00 3.9

No of Network Interface Units(NIU) 2 6.4 0.00 6.4

Number of Network Switches 1 4.8 0.00 4.8

Misc (watchdog, clock, PHRC) 0.29 0.00 0.29

Table 3: Fault Rate Estimates for FGT in deep space/GEO mission, under nominal solar conditions

Parameters Latch
Faults/day

Gate
Faults/day

Total
Faults/day

System totals: 1,210 0.10 1,210

Number of nodes per system 20

Additional system-level elements 1.2 0.00 1.2

Additional Network Switches per
system

20 14 0.00 14

Totals per node: 60 0.01 60

Number of CPU's per node 2 50 0.00 50

Size of RAM per CPU, Mbytes 64 .16 .16

Size of L2 cache per CPU, Mbytes 1 .00 .00

Node Controller (NC) CPU 7.1 0.00 7.1

Size of NC RAM, Mbytes 4 .01 .01

Bus controller (PCI) .59 0.00 .59

No of Network Interface Units (NIU) 2 .97 0.00 .97

Number of Network Switches 1 .72 0.00 .72

Misc (watchdog, clock, PHRC) .04 0.00 .04

Table 4: Fault Rate Estimates for FGT in deep space/GEO mission

Parameters Latch
Faults/day

Gate
Faults/day

Total
Faults/day

System totals: 1,209,818 101 1,209,919

Number of nodes per system 20

Additional system-level elements 1,152 0.03 1,152

Additional Network Switches per system 20 14,458 0.60 14,458

Totals per node: 59,710 5.01 59,715

Number of CPU's per node 2 50,108 3.90 50,112

Size of RAM per CPU, Mbytes 64 161 161

Size of L2 cache per CPU, Mbytes 1 2.5 2.5

Node Controller (NC) CPU 7,108 0.00 7,108

Size of NC RAM, Mbytes 4 10 10

Bus controller (PCI) 589 0.18 589

No of Network Interface Units (NIU) 2 965 0.60 966

Number of Network Switches 1 723 0.30 723

Misc (watchdog, clock, PHRC) 44 0.03 44

Fault Model Verification

To verify the Fault Models, the first step is to
experimentally determine Latch Fault Rate and Gate Fault
Rate parameters. It is possible to experimentally distinguish
latch from gate faults by varying the clock and noting the

difference in system fault rates/responses. If the chip
supports it, some gate faults can be seen alone using a static
clock. For verifying the predicted levels of faults in the
individual functional modules making up each device, we
are developing software-implemented fault detection and
characterization techniques which should be nearly adequate

to this task, and we will design a diagnostic FPGA for
hardware-based fault characterization for the cases software
cannot cover.

Table 5: Faults per Day for the three mission orbit
profiles, broken out per CPU and per Node Controller

(NC)

LEO GEO/DS

CPU NC CPU NC

Nominal 167 47 25 7

Solar Flare 167 47 25,000 7,100

Table 6: Single bit fault rates (faults per day) for L2
caches and main memory

Environment 1 Mbyte L2
Cache

64 Mbyte Main
Memory RAM

LEO 1,700 107,000

DS/GEO Nominal 250 16,000

DS/GEO Flare 252,000 16,106,000

Verifying the higher level error models is more
straightforward, and will be done by running synthetic OS
and applications tasks under irradiated conditions, and
monitoring nominal and specially instrumented software
outputs.

9. STATUS AND PRELIMINARY CONCLUSIONS

As a first-order test of the feasibility of the REE goal of
using SIFT to mitigate radiation faults in space, prototype
versions of the REE SIFT system software facilities have
been demonstrated on a simplified multiprocessor system of
4 to 8 CPU’s, with a variety of parallel processing
applications. The majority of the fault injection
experimentation work, to date, has been performed using a
texture analysis image processing application which will
potentially be used for autonomous navigation and geology
by a future Mars Rover. This work was not performed by
the authors of this paper, and will be presented in other
publications. Here, we briefly summarized the results to
date:

Experimental Results

For this first test, the operating system, application
initialization, and initial data loading into the application
was ignored. Injection was preformed on application data
processing, and application data output I/O. Under these
conditions, the prototype SIFT system has an overhead of
<10% in the absence of faults. This simplification is
reasonable for an initial rough estimate due to the nature of

these types of jobs, i.e., tasks in which the science
application will be consuming the vast majority of the
computational resources, and will thus have the largest fault
cross section. It should be noted that the high-rate/volume
I/O in these tests is considered to be part of the application
rather than the OS. These I/O operations will consume a
significant fraction of the system resources in typical space
based science applications. With these caveats in mind, we
have found that with early prototype SIFT facilities,
effective science computations have been successfully
carried out with faults being injected into a science
application at rates of one fault per minute. Naturally, a
performance penalty is paid, but it is still only a maximum
of 15% under these conditions which, per our current fault
model, is a realistic estimate of the expected fault rate in a
LEO or GEO orbit.

Radiation test results on older processors have shown that
use conditions have a pronounced effect on the overall
processor error rate [9,12]. Register-intensive tests that
sequence through all registers produce a much higher cross
section -- approximately three orders of magnitude greater --
than tests using an operational program such as a fast-
Fourier transform or sort program. This is simply a result of
the fact that many of the registers are either not used, or are
rewritten before errors can propagate to the point that they
affect the results. The error rate increases significantly
when internal cache memories are used, approximately
scaling with memory size.

Some errors result in conditions where the processor cannot
be reinitialized without rebooting, or in some cases by
temporarily removing power [9,12]. This class of error is
obviously of critical importance in system applications, and
may depend on the operating system as well as on the
internal conditions in the processor. Fortunately, the error
rate for such conditions is at least three orders of magnitude
below the error rate for register errors. This suggests that
only a very small region within the processor is responsible
for such errors. However, it is difficult to characterize such
errors, and more effort needs to be spent in determining how
they relate to processor architecture.

Faults in caches and Memory Management Units (MMUs)
have been a point of major concern for the REE system,
because they are potentially very disruptive. Intuitively, this
is because of the possibility that, for example, an error in
one or more address bits in a Translation Lookaside Buffer
(TLB) might cause multiple data values in an entire cache
line or MMU block to be read from or written to the wrong
location. Little work has been found in the literature on
detailed analysis of the effects of faults in caches or MMUs,
or in adding fault tolerance to them. The work that has been
done is mostly focused on hardware-level voting, using
replicated hardware synchronized at clock rates [7], and is
too power-intensive for REE.

A detailed investigation of the MMU and cache subsystems
of the PowerPC 750 has been performed, and the results are

summarized below. A primary factor affecting the
likelihood of errors from low-level faults is the time that
elapses between the data being refreshed with new values.
If values are rapidly being refreshed, faults have less time to
propagate into errors, and fault latency is lower. As an
example, faults in CPU general registers are typically
overwritten about 50% of the time before causing any errors
whatsoever. Depending on how they are used by the
particular OS, there are a few hardware elements that may
be used with either very short refresh latencies, or very long
latencies. These include the 8 Block Address Translation
(BAT) caches, and the 16 Virtual Segment Identifier (VSID)
registers. By using suitable software structures, we believe it
is feasible to use the other MMU and cache hardware
elements so they are intentionally flushed and refreshed on a
frequent basis. This occasional flushing will impose only a
relatively small performance impact on operation, and will
reduce the degree of error propagation from each fault. It
will not prevent errors from occurring, however, and those
errors that do occur, especially in the Translation Lookaside
Buffers (TLBs) can cause aliasing of memory addresses. In
this effect, faults in the address cause errors only under two
circumstances.

(1) the faulty cache line was marked as dirty, and would be
written back to memory

(2) executing code or data references the faulty address
before it is flushed from the cache or MMU.

In either case, one or more incorrect data values will be
introduced into the computation for as long as the aliased
entry exists in the TLB.

To determine the likelihood of MMU- and cache-induced
errors, the following table shows the error distribution by
hardware for the node CPUs, MMUs, L1 caches and L2
caches, in the GEO environment with nominal solar activity
analyzed above.

We see that over 1/3 of the faults per day will be in the
TLBs, and roughly 1/2 will be in data stored in the L1 cache,
while the remainder of all other CPU faults will be only a
small fraction of the daily faults. The tag bits of the caches
and MMUs have an extremely small fault cross-section, and
so entries incorrectly marked as dirty can be ignored. For
case (1) above, the window of opportunity for an error to
occur due to a fault is very short, lasting from the time the
data is changed until it is written back to memory. In write-
back mode, this window could be a substantial number of
clock cycles, but in write-through mode it would be
effectively zero. Thus, by paying some performance
penalty and using caches in write-through mode, this source
of faults can be significantly reduced. For case (2), a critical
question to determine is the likelihood of address aliasing,
which will need to be determined by examination of
memory organization and usage patterns for the OS and
applications. This work is underway, and will be reported
on in the future.

Table 7: Node CPU and L2 cache fault
rates for GEO environment and nominal

solar activity

Hardware Element Estimated
Faults/day

CPU Total: 25

L1 cache TLBs 2.2

L1 cache data 13

MMU TLBs 0.5

L2 cache TLBs 8.4

L2 cache data 0 (EDAC)

Other 1.2

Preliminary Conclusions

Our preliminary conclusions concerning some aspects of the
REE system design are based on partially completed
functional level and error level models, and include:

• During nominal solar activity, and in LEO orbit, the
predicted fault rates are relatively benign. We expect to
be able to adequately detect and handle these fault
using only software fault tolerance techniques.

• Under solar flare conditions, operation of a COTS
based system like the REE First Generation Testbed
will be challenging. Heavy shielding may be able to
bring the fault rate down to a manageable level.

• CPU faults are overwhelming concentrated in the L1
cache and TLBs. Scrubbing techniques may prove
useful in mitigating the effect of these faults.

• Adding EDAC to the external L2 cache is essential
because of the need to correct single-bit errors, and
perhaps, in future technologies, multi-bit errors for
highly scaled devices. This will raise cache fault
tolerance to acceptable levels.

10. ACKNOWLEDGEMENTS

This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

11. REFERENCES

[1] Tadashi Takano, Takahiro Yamada, et al, “Fault-
Tolerance Experiments of the HITEN Onboard Space
Computer,” Proceedings of the Annual International
Symposium on Fault-Tolerant Computing, IEEE, 1991,
Austin, Texas.

[2] Bill Stapor, Pat McDonald, “Clementine 2 PC603e
Radiation Effects Study,” Technical Report from Innovative
Concepts, 8200 Greensboro Drive, Suite 801, McLean
Virginia 22102, (703) 893-2002, November 25, 1997.

[3] A. H. Johnston, “Scaling Effects and Radiation
Susceptibility of Microprocessors,” Technical
Memorandum, Jet Propulsion Laboratory.

[4] Peter Liden, Peter Dahlgren, Rolf Johansson, Johan
Karlsson, “On Latching Probability of Particle Induced
Transients in Combinatorial Networks,” Proceedings of the
Annual International Symposium on Fault-Tolerant
Computing, IEEE, 1994, Austin, Texas.

[5] Marcus Rimen, Joakim Ohlsson, Jan Torin, “On
Microprocessor Error Behavior Modeling,” Proceedings of
the Annual International Symposium on Fault-Tolerant
Computing, IEEE, 1994, Austin, Texas.

[6] Joakim Ohlsson, Marcus Rimen, Ulf Gunneflo, “A
Study of the Effects of Transient Fault Injection into a 32-
bit RISC with Built-in Watchdog,” Proceedings of the
Annual International Symposium on Fault-Tolerant
Computing, IEEE, 1992, Boston, Massachusetts.

[7] Chung-Ho Chen, Arun K. Somani, “A Cache Protocol
for Error Detection and Recovery in Fault-Tolerant
Computing Systems,” Proceedings of the Annual
International Symposium on Fault-Tolerant Computing,
IEEE, 1994, Austin, Texas.

[8] K. W. Li, J. R. Armstrong, J. G. Tront, “An HDL
Simulation of the Effects of Single Event Upsets on
Microprocessor Program Flow,” IEEE Transactions on
Nuclear Science, Vol. NS-31, No. 6, Dec. 1984, pp. 1139-
144.

[9] F. Bezzera, et al., “SEE Test of Commercial Off-the-
Shelf Microprocessors,” Data Workshop from the 1997
RADECS Conference, p. 41, Cannes, France, September,
1997.

[10] J. L. Barth, Modeling Space Radiation Environments,
Section 1 of the Short Course presented at the IEEE Nuclear
and Space Radiation Effects Conference, Snowmass,
Colorado, July 21, 1997.

[11] A. H. Johnston, “Radiation Effects in Advanced
Microelectronic Technologies,” IEEE Trans. Nucl. Sci., 45,
p. 1339-1354, 1998.

[12] C. K. Kouba and G. Choi, “Single-Event Upset
Characterization of the 486-DX Microprocessor,” 1997
IEEE Radiation Effects Data Workshop, p. 48, IEEE Doc.
97TH8293.

John Beahan is System Engineer for the Remote
Exploration and Exploration Project at the Jet Propulsion
Laboratory. His research interests include real-time
systems, parallel and distributed systems, fault tolerance,
robotics, nontraditional programming languages and
genetic algorithms. He has served as system engineer and
software lead on projects including an advanced computer
packaging spaceflight experiment, two telerobot systems for
satellite servicing, and a distributed fault-tolerant
middleware layer for spacecraft applications. He holds a

B.S. in Engineering and Applied Science from the California
Institute of Technology.

Robert Ferraro is the manager of the Remote Exploration
and Experimentation Project at the Jet Propulsion
Laboratory. He also manages ground based supercomputing
research and development activities at JPL. He has
previously developed parallel computing applications and
numerical methods for electromagnetic and plasma
simulations, and for atmospheric data assimilation. Prior to
joining JPL, he did plasma physics research at UCLA. He
holds a BA from Cornell University, and an MS and Ph.D.
from the University of Rochester.

Allan Johnston leads the Radiation Effects group at the Jet
Propulsion Laboratory. He has done research in many
areas relating to radiation effects on electronics, including
the effects of device scaling on single-event upset, latchup,
and permanent damage in linear devices and
optoelectronics. Before joining JPL he worked on radiation
effects at Boeing Aerospace in Seattle, Washington. He
holds B.S. and M.S. degrees from the University of
Washington.

Daniel S. Katz is the Applications Project Element Manager
for the Remote Exploration and Experimentation Project at
the Jet Propulsion Laboratory. Previously, he led the
development of MOD Tool (a tool for the integrated design
of microwave and millimeter-wave instruments), and worked
with various parallel numerical methods and algorithms in
both electromagnetic wave propagation and geophysics.
Prior to joining JPL, he was employed by Cray Research as
a Computational Scientist on-site at JPL and Caltech,
specializing in parallel implementation of computational
electromagnetic algorithms. He received his B.S., M.S., and
Ph.D degrees in Electrical Engineering from Northwestern
University, Evanston, Illinois, in 1988, 1990, and 1994,
respectively.

Raphael Some is the Chief Engineer for the Remote
Exploration and Experimentation Project at the Jet
Propulsion Laboratory. Previously, at JPL, his assignments
included management of the Smart Sensors, Sensor Web and
the X2000 Avionics Future-Deliveries tasks. His experience
prior to JPL includes the development of fault tolerant space
based supercomputers as well as a variety of avionics and
signal processing systems for both commercial and military
applications. He holds a BSEE from Rutgers University.

