
Software vs. data in the context of citation
Daniel S. Katz1, Kyle E. Niemeyer2, Arfon M. Smith3, William L. Anderson4,
Carl Boettiger5, Konrad Hinsen6, Rob Hooft7, Michael Hucka8, Allen Lee9,
Frank Löffler10, Tom Pollard11, and Fernando Rios12

1National Center for Supercomputing Applications & Electrical and Computer
Engineering Department & School of Information Sciences, University of Illinois
Urbana-Champaign, Urbana, Illinois, USA; d.katz@ieee.org; ORCID:
0000-0001-5934-7525
2School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State
University, Corvallis, Oregon, USA; kyle.niemeyer@oregonstate.edu; ORCID:
0000-0003-4425-7097
3Space Telescope Science Institute, Baltimore, Maryland, USA; arfon@stsci.edu;
ORCID: 0000-0002-3957-2474
4School of Information, University of Texas at Austin, Austin, Texas, USA;
band@acm.org; ORCID: 0000-0003-3200-7947
5Department of Environmental Science, Policy, and Management, University of
California, Berkeley, California, USA; cboettig@berkeley.edu; ORCID:
0000-0002-1642-628X
6Centre de Biophysique Moléculaire (CNRS), Orléans, France; konrad.hinsen@cnrs.fr;
ORCID: 0000-0003-0330-9428
7Dutch Techcentre for Life Sciences; Utrecht, The Netherlands; rob.hooft@dtls.nl;
ORCID: 0000-0001-6825-9439
8Computing and Mathematical Sciences, California Institute of Technology, Pasadena,
California, USA; mhucka@caltech.edu; ORCID: 0000-0001-9105-5960
9Center for Behavior, Institutions & the Environment, Biosocial Complexity Initiative,
Arizona State University, Tempe, Arizona, USA; allen.lee@asu.edu; ORCID:
0000-0002-6523-6079
10Center for Computation & Technology, Louisiana State University, Baton Rouge,
Louisiana, USA; knarf@cct.lsu.edu; ORCID: 0000-0001-6643-6323
11Institute for Medical Engineering & Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA; tpollard@mit.edu; ORCID: 0000-0002-5676-7898
12Data Management Services, The Sheridan Libraries, Johns Hopkins University,
Baltimore, Maryland, USA; rios@jhu.edu; ORCID: 0000-0001-6262-3260

Corresponding author:
Daniel S. Katz1

Email address: d.katz@ieee.org

ABSTRACT

Software is data, but it is not just data. While “data” in computing and information science can refer to
anything that can be processed by a computer, software is a special kind of data that can be a creative,
executable tool that operates on data. However, software and data are similar in that they both traditionally
have not been cited in publications. This paper discusses the differences between software and data in
the context of citation, by providing examples and referring to evidence in the form of citations.

INTRODUCTION
This preprint is a snapshot of the GitHub repository (Katz et al., 2016b). The repository is intended to be
used to discuss and document the differences between software and data in the context of citation in the
research record. This preprint allows the current state of this work to be cited.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2630v1 | CC BY 4.0 Open Access | rec: 10 Dec 2016, publ: 10 Dec 2016

The repository was created as part of the FORCE11 Software Citation Working Group (FORCE11
Software Citation Working Group, 2016) writing the FORCE11 Software Citation Principles (Smith
et al., 2016a), and then the editors submitting them to PeerJ Computer Science (Smith et al., 2016b) and
responding to reviewer comments.

We start with the idea that software, while similar to data in terms of not traditionally having been
cited in publications, is also different than data. In the context of research (e.g., in science), the term “data”
usually refers to electronic records of observations made in the course of a research study (“raw data”) or
to information derived from such observations by some form of processing (“processed data”), as well as
the output of simulation or modeling software (“simulated data”). In the following, we use the term “data”
in this specific sense.

The confusion about the distinction between software and data comes in part from the much wider
sense that the term “data” has in computing and information science, where it refers to anything that can
be processed by a computer. In that sense, software is just a special kind of data.

The remainder of this document gives examples of these differences. The format of this document is a
series of statements (as subsections), each with an explanation, including or followed by evidence in the
form of citations.

Updating this document
To add a new difference between software and other forms of data, please submit a pull request in the
repository (Katz et al., 2016b). Similarly, to add or update a citation or to add a new explanation, please
also do this via a pull request. To discuss a difference (for example, you don’t think it is correct), please
open a new issue or discuss via an existing issue, again in the repository (Katz et al., 2016b). If you do
add text in a pull request, also add yourself as an additional author in that same request. Once there is a
significant set of changes, this preprint will be updated.

LIST OF DIFFERENCES
Software is executable, data is not
A commonsense definition of software is that it is “a set of instructions that direct a computer to do a
specific task” (Chun, 2005). On the other hand, data is simply a collection of facts or measurements
(real or simulated). In other words, software is functionally active, while data is passive. Of course,
software (in form) can be considered data as well, especially to functional programmers familiar with
LISP and other languages with homoiconicity (Wikipedia, 2016b). However, from the point of view
of conducting research with software, the main difference is that software is associated with action:
knowledge creation, information transformation, visualization, etc. An action can be thought of a
functional transformation between two states of data: a “before” (e.g., input files, parameter settings,
unstructured or tacit information) to an “after” state (e.g., output files, transformed data, structured
knowledge). That is, software generally performs a function upon something (e.g., software processes
data), while data generally has a function performed upon it (e.g., data is processed by software). If we
accept the definitions of software and data given at the beginning of this section, then (at least in scientific
research), the difference between data and software can be summarized by the statement of Matthews
et al. (2010): “we are more interested in what software does rather than what software is.”

Data provides evidence, software provides a tool
Software exists to perform a task, while data does not. Software is fundamentally a logical construct, while
data is fundamentally an empirical observation. Software can be used to express or explain processes and
concepts, oftentimes with data as input. These differences have important consequences for how each
may be re-used in the future: software may be used by any researchers seeking to apply the same methods,
data by any researchers seeking evidence about the same facts.

Software is a creative work, scientific data are facts or observations
In particular, software is generally subject to copyright protection as a creative work that can continue to
evolve over time, while scientific data is frequently considered outside the domain of copyright as it is
comprised of contextual facts about the world (you cannot copyright the height of Mt. Everest.) Major
scientific data repositories (e.g., Dryad, figshare) automatically apply licenses suited to data that may not
be suited to software.

2/4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2630v1 | CC BY 4.0 Open Access | rec: 10 Dec 2016, publ: 10 Dec 2016

Evidence: Can I apply a Creative Commons license to software? (Creative Commons, 2016); Non-
software licenses (Choose an open source license, 2016)

Software suffers from a different type of bit rot than data: It is frequently built to use
other software, leading to complex dependencies, and these dependent software pack-
ages also frequently change
In general, software must be constantly maintained and updated in order to continue to function as both
the hardware and software environments on which it depends change. Operating systems, software and
system libraries, programming language toolchains and other compile-time and run-time dependencies all
evolve as their respective maintainers and developers find and fix bugs, and as user requirements demand
new features and capabilities. This is sometimes called “software rot” (Wikipedia, 2016c) and other times
called “bit rot.” On the other hand, bit rot for data, or data degradation (Wikipedia, 2016a), is generally
thought of as changes in the underlying hardware or storage media that holds the bits, or changes in the
software capable of interpreting the data. This definition of bit rot also affects software since software is
actually stored as a set of bits on a filesystem, but software bit rot is generally thought of as a higher level
concern than data- or file-level bit rot.

The lifetime of software is generally not as long as that of data
The lifetime of software can reach 20 years or more, especially for well-maintained projects. The life of
software can end if the task it was supposed to do is not needed anymore, or if another software does it
in a better way. Data, on the other hand, often represents the results of an experiment. It might become
less interesting with time, but it cannot be replaced as it is connected to one particular experiment at that
particular time. In this sense, software is replaceable (by other software), while data is usually not.

A 1995 NRC Report Preserving Scientific Data on Our Physical Universe (National Research Council,
1995) provides the following recommendations regarding retention criteria and the appraisal process
(p. 40): “As a general rule, all observational data that are nonredundant, useful, and documented well
enough for most primary uses should be permanently maintained. Laboratory data sets are candidates
for long-term preservation if there is no realistic chance of repeating the experiment, or if the cost and
intellectual effort required to collect and validate the data were so great that the long-term retention is
clearly justified. For both observational and experimental data, the following retention criteria should be
used to determine whether a data set should be saved: uniqueness, adequacy of documentation (metadata),
availability of hardware to read the data records, cost of replacement, and evaluation by peer review.
Complete metadata should define the content, format or representation, structure, and context of a data
set.”

While software is often replaced by newer software, computational models and data analyses can be
important digital artifacts that should be preserved (Rollins et al., 2014) along with datasets in order to
properly verify or reproduce (Peng, 2011) published findings. Long-term preservation of the software
used in computational science is a wicked problem as outlined in the final report from the Preserving.exe:
Toward a National Strategy for Preservation Software 2013 meeting (Library of Congress, 2013). At
that time, best practices to facilitate reproducibility of computational science involve archiving of the
following, in durable, plaintext formats:

1. the software itself, in source code form in a trusted digital repository

2. structured or unstructured narrative documentation (e.g., the ODD protocol (Grimm et al., 2013))
specifically covering key components of the software

3. descriptive provenance metadata on the software dependencies needed to compile and run the
software as well as any input data dependencies

though these practices may change as virtualization and containerization become more common.

ACKNOWLEDGMENTS
The initial version of the text in this document was a list in an early version of (Smith et al., 2016b),
which was developed by the FORCE11 Software Citation Working Group. The members of this working
group were an initial set of volunteers who were joined by members of a related WSSSPE2 working

3/4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2630v1 | CC BY 4.0 Open Access | rec: 10 Dec 2016, publ: 10 Dec 2016

group (Katz et al., 2016a). During the review process, it became clear having this text in that document
was a distraction for the reviewers, so it was extracted into a repository (Katz et al., 2016b) where it
continued to develop. As such, both FORCE11 (The Future of Research Communication and eScholarship;
https://www.force11.org) and WSSSPE (Working towards Sustainable Software for Science:
Practice and Experiences; http://wssspe.researchcomputing.org.uk) are acknowledged
as instigating this discussion.

REFERENCES
Choose an open source license (2016). Non-software licenses. URL: http://choosealicense.
com/non-software/ [Accessed: 2016-12-05].

Chun, W. H. K. (2005). On software, or the persistence of visual knowledge. Grey Room, pages 26–51.
DOI:10.1162/1526381043320741.

Creative Commons (2016). Can i apply a creative commons license to software? URL:
https://wiki.creativecommons.org/index.php/Frequently_Asked_
Questions#Can_I_apply_a_Creative_Commons_license_to_software.3F
[Accessed: 2016-12-05].

FORCE11 Software Citation Working Group (2016). FORCE11 software citation working group GitHub
repository. URL: https://github.com/force11/force11-scwg [Accessed: 2016-12-05].

Grimm, V., Polhill, G., and Touza, J. (2013). Documenting social simulation models: The ODD protocol
as a standard. In Edmonds, B. and Meyer, R., editors, Simulating Social Complexity: A Handbook,
pages 117–133. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI:10.1007/978-3-540-93813-2 7.

Katz, D. S., Choi, S.-C. T., Wilkins-Diehr, N., Chue Hong, N., Venters, C. C., Howison, J., Seinstra, F. J.,
Jones, M., Cranston, K., Clune, T. L., de Val-Borro, M., and Littauer, R. (2016a). Report on the second
workshop on sustainable software for science: Practice and experiences (WSSSPE2). Journal Open
Research Software, 4(1):e7. DOI:10.5334/jors.85.

Katz, D. S., Niemeyer, K. E., Smith, A. M., Anderson, W. L., Boettiger, C., Hinsen, K., Hucka, M.,
Lee, A., Löffler, F., Pollard, T., and Rios, F. (2016b). Software vs. data GitHub repository. URL:
https://github.com/danielskatz/software-vs-data [Accessed: 2016-12-05].

Library of Congress (2013). Preserving.exe: Toward a national strategy for software preser-
vation. URL: http://www.digitalpreservation.gov/multimedia/documents/
PreservingEXE_report_final101813.pdf [Accessed: 2016-12-05].

Matthews, B., Shaon, A., Bicarregui, J., and Jones, C. (2010). A framework for software preservation.
International Journal of Digital Curation, 5(1):91?105. DOI:10.2218/ijdc.v5i1.145.

National Research Council (1995). Preserving Scientific Data on Our Physical Universe: A New
Strategy for Archiving the Nation’s Scientific Information Resources. National Academies Press. URL:
http://www.nap.edu/catalog/4871.html [Accessed: 2016-12-05].

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060):1226–1227.
DOI:10.1126/science.1213847.

Rollins, N. D., Barton, C. M., Bergin, S., Janssen, M. A., and Lee, A. (2014). A computational model
library for publishing model documentation and code. Environmental Modelling & Software, 61:59 –
64. DOI:10.1016/j.envsoft.2014.06.022.

Smith, A. M., Katz, D. S., Niemeyer, K. E., and FORCE11 Software Citation Work-
ing Group (2016a). Software citation principles. URL: https://www.force11.org/
software-citation-principles [Accessed: 2016-12-05].

Smith, A. M., Katz, D. S., Niemeyer, K. E., and FORCE11 Software Citation Working Group (2016b).
Software citation principles. PeerJ Computer Science, 2:e86. DOI: 10.7717/peerj-cs.86.

Wikipedia (2016a). Data degradation. URL: https://en.wikipedia.org/wiki/Data_
degradation [Accessed: 2016-12-05].

Wikipedia (2016b). Homoiconicity. URL: https://en.wikipedia.org/wiki/
Homoiconicity [Accessed: 2016-12-05].

Wikipedia (2016c). Software rot. URL: https://en.wikipedia.org/wiki/Software_rot
[Accessed: 2016-12-05].

4/4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2630v1 | CC BY 4.0 Open Access | rec: 10 Dec 2016, publ: 10 Dec 2016

https://www.force11.org
http://wssspe.researchcomputing.org.uk
http://choosealicense.com/non-software/
http://choosealicense.com/non-software/
http://dx.doi.org/10.1162/1526381043320741
https://wiki.creativecommons.org/index.php/Frequently_Asked_Questions#Can_I_apply_a_Creative_Commons_license_to_software.3F
https://wiki.creativecommons.org/index.php/Frequently_Asked_Questions#Can_I_apply_a_Creative_Commons_license_to_software.3F
https://github.com/force11/force11-scwg
http://dx.doi.org/10.1007/978-3-540-93813-2_7
http://dx.doi.org/10.5334/jors.85
https://github.com/danielskatz/software-vs-data
http://www.digitalpreservation.gov/multimedia/documents/PreservingEXE_report_final101813.pdf
http://www.digitalpreservation.gov/multimedia/documents/PreservingEXE_report_final101813.pdf
http://dx.doi.org/10.2218/ijdc.v5i1.145
http://www.nap.edu/catalog/4871.html
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1016/j.envsoft.2014.06.022
https://www.force11.org/software-citation-principles
https://www.force11.org/software-citation-principles
https://doi.org/10.7717/peerj-cs.86
https://en.wikipedia.org/wiki/Data_degradation
https://en.wikipedia.org/wiki/Data_degradation
https://en.wikipedia.org/wiki/Homoiconicity
https://en.wikipedia.org/wiki/Homoiconicity
https://en.wikipedia.org/wiki/Software_rot

	References

