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Abstract

This paper compares two methods for running an appli-

cation composed of a set of modules on a grid. The set of

modules (collectively called Montage) generates large as-

tronomical image mosaics by composing multiple small im-

ages. The workflow that describes a particular run of Mon-

tage can be expressed as a directed acyclic graph (DAG), or

as a short sequence of parallel (MPI) and sequential pro-

grams. In the first case, Pegasus can be used to run the

workflow. In the second case, a short shell script that calls

each program can be run. In this paper, we discuss theMon-

tage modules, the workflow run for a sample job, and the

two methods of actually running the workflow. We examine

the run time for each method and compare the portions that

differ between the two methods.

1 Introduction

Many science data processing applications can be ex-

pressed as a sequence of tasks to be performed. One such

astrononmy application builds science-grade mosaics from

multiple images as if they were single images with a com-

mon coordinate system, projection, etc. This software must

preserve the astrometric and photometric integrity of the

original data, and rectify background emission from the sky

or from the instrument using physically-based models. The

Montage project [1] delivers such tools to the astronomy

community.

Montage has been designed as a scalable, portable toolkit

that can be used by astronomers on their desktops for sci-

ence analysis, integrated into project and mission pipelines,

or run on computing grids to support large-scale product

generation, mission planning and quality assurance. This

paper discusses two strategies that have been used by Mon-

tage to demonstrate implementation of an operational ser-

vice on the Distributed Terascale Facility (TeraGrid) [2],

accessible through a web portal.

Two previously published papers provide background on

Montage. The first described Montage as part of the archi-

tecture of the National Virtual Observatory [3], and the sec-

ond described some of the initial grid results of Montage

[4]. Additionally, a book chapter [5] discussed an initial

version of this work. This paper includes highlights from

those introductory papers, but focuses on the performance

aspects of the two methods for running Montage on the grid.

2 Montage architecture

2.1 Processing steps

There are four steps to building a mosaic with Montage:

• Re-projection of input images to a common spatial

scale, coordinate system, and projection

• Modeling of background radiation in images to

achieve common flux scales and background levels by

minimizing the inter-image differences

• Rectification of images to a common flux scale and

background level

• Co-addition of re-projected, background-corrected im-

ages into a final mosaic
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Montage accomplishes these tasks in independent,

portable, ANSI C modules. This approach controls test-

ing and maintenance costs, and provides flexibility to users.

They can, for example, use Montage simply to re-project

sets of images and co-register them on the sky, implement

a custom background removal algorithm, or define another

processing flow through custom scripts.

2.2 Sequential processing

The first public release of Montage [6], version 1.7, sup-

ported serial processing of images controlled through a set

of simple executives. It was rigorously tested on machines

running Red Hat Linux, and has been successfully run under

Solaris and Mac OS X, among others. Subsequent versions

of Montage led to improved computational performance [4]

(version 2) and added parallelism (version 3). Figure 1

shows the high level design for Montage.

Figure 1. The high-level design of Montage.

3 Grid-enabled Montage

In this section, we describe a benchmark problem and

system, the elements needed to make this problem run on

a grid, and two disparate approaches. We then discuss the

performance of the parts of the two approaches that differ,

along with advantages and disadvantages of each.

3.1 Benchmark problem and system

In order to examine grid-enabling Montage, we chose a

sample problem that could be computed on a single pro-

cessor in a reasonable time as a benchmark. The results in

this paper involve this benchmark, unless otherwise stated.

The benchmark problem generates a mosaic of 2MASS [7]

data from a 6 × 6 degree region at M16 (a specific galaxy).

This requires 1254 input 2MASS images, each about 0.5

Megapixel, for a total of about 657 Megapixels (about 5

GB with 64 bits/pixel double precision floating point data).

The output is a 3.7 GB FITS (Flexible Image Transport Sys-

tem) file with a 21600 × 21600 pixel data segment, and 64

bits/pixel double precision floating point data. The output

data is a little smaller than the input data size because there

is some overlap between neighboring input images. For the

timing results reported in this section, the input data had

been pre-staged to a local disk on the compute cluster.

Results in this paper are measured on the “Phase 2” Ter-

aGrid [2] cluster at the National Center for Supercomputing

Applications (NCSA), unless otherwise mentioned. This

cluster has 887 nodes, each with dual Itanium-2 processors

with at least 4 GB of memory. 256 of the nodes have 1.3

GHz processors, and the other 631 nodes have 1.5 GHz pro-

cessors. The timing tests reported in this paper used the 1.5

GHz processors. The network between nodes is Myricom’s

Myrinet and the operating system is SuSE Linux. Disk I/O

is to a 24 TB General Parallel File System (GPFS). Jobs

are scheduled on the system using Portable Batch System

(PBS) and the queue wait time is not included in the execu-

tion times since that is heavily dependent on machine load

from other users.

Figure 2 shows the processing steps for the bench-

mark problem. There are two types of parallelism: sim-

ple file-based parallelism, and more complex module-based

parallelism. Examples of file-based parallelism are the

mProject modules, each of which runs independently on

a single file. mAddExec, which is used to build an out-

put mosaic in tiles, falls into this category as well, as once

all the background-rectified files have been built, each out-

put tile may be constructed independently, except for I/O

contention. The second type of parallelism can be seen in

mAdd, where any number of processors can work together

to build a single output mosaic. This module has been par-

allelized over blocks of rows of the output, but the paral-

lel processes need to be correctly choreographed to actually

write the single output file. The results in this paper are for

the serial version of mAdd, where each output tile is con-

structed by a single processor.
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Figure 2. Example workflow for Montage, for a

casewhere three images are to bemosaicked.

3.2 Common grid features

The basic user interface to Montage is implemented as

a web portal. In this portal, the user selects a number of

input parameters for the mosaicking job, such as the cen-

ter and size of the region of interest, the source of the data

to be mosaicked, and some identification such as an email

address. Once this information is entered, the user assumes

that the mosaic will be computed, and she will be notified

of the completion via an email message containing a URL

where the mosaic can be retrieved.

Behind the scenes and hidden from the user’s view, a

number of things have to happen to make this work. First,

a set of compute resources needs to be chosen. Here, we

will assume that this is a cluster with processors that have

access to a shared file system. Second, the input data files

and executable code needs to be moved to these resources.

Third, the modules need to be executed in the right order. In

general, this might involve moving intermediate files from

one set of resources to another, but the previous assump-

tion makes this file movement unnecessary. Fourth, the out-

put mosaic and perhaps some status information needs to

be moved to a location accessible to the user. Fifth and fi-

nally, the user must be notified of the job completion and

the location of the output(s).

3.2.1 Montage portal

The Montage TeraGrid portal has a distributed architec-

ture, as illustrated in Figure 3. The initial version of por-

tal is comprised of the following five main components,

described in more detail below, each having a client and

server: (i) User Portal, (ii) Abstract Workflow Service, (iii)

2MASS Image List Service, (iv) Grid Scheduling and Exe-

cution Service, and (v) User Notification Service.

Figure 3. The Montage TeraGrid portal archi-

tecture.

User Portal. Users submit mosaic requests by filling in

a web form. The portal server receives and validates the

input, then stores the requests to disk for later processing.

A separate daemon processes requests by calling the ab-

stract workflow service client code (mDAG,) and then the

grid scheduling and execution service client code.

Abstract Workflow Service. This service builds a di-

rected acyclic graph (DAG) that describes the workflow. It

also builds input files needed in the Montage mosaic pro-

cessing. The workflow specifies the jobs and files that make

up the mosaic processing, as well as the dependencies (used

to determine which jobs can be run in parallel.)

2MASS Image List Service. This service takes as input

a celestial object name or location on the sky (which must

be specified as a single argument string), and a mosaic size.

Identifiers for 2MASS images that overlap the specified area

on the sky are returned in a table, with columns that include

the filenames and other attributes associated with the im-

ages. This can be generalized for other surveys.

Grid Scheduling and Execution Service. The Grid

Scheduling and Execution Service takes as input the

abstract workflow, and all of the input files needed to con-

struct the mosaic. The service authenticates users (using

grid security credentials stored in a MyProxy server [8]),

schedules the job on the grid using Pegasus [9, 10, 11, 12],

and then executes the job using Condor DAGMan [13].

User Notification Service. The last step in the grid pro-

cessing is to notify the user of the URL from which the

mosaic may be downloaded. This notification is done by a

remote user notification service so that a new notification

mechanism can be used later without modifying the Grid

Scheduling and Execution Service.
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3.3 Grid-enabling Montage through use of MPI
parallelization

The first method of running Montage on a grid is

to use grid-accessible clusters, such as the TeraGrid.

This is very similar to traditional, non-grid paralleliza-

tion. By use of MPI (the Message Passing Interface [14]),

the executives (mProjExec, mDiffExec, mFitExec,

mBgExec, mAddExec) and mAdd can be run on multiple

processors. The Atlasmaker [15] project previously devel-

oped an MPI version of mProject, but it was not closely

coupled to the released Montage code, and therefore has

not been maintained to work with current Montage releases.

The current MPI versions of the Montage modules are gen-

erated from the same source code as the single-processor

modules, by use of preprocessing directives.

The structure of the executives are similar to each other,

in that each has some initialization that involves determin-

ing a list of files on which a sub-module will be run, a loop

in which the sub-module is actually called for each file, and

some finalization work that includes reporting on the results

of the sub-module runs. The executives, therefore, are par-

allelized very simply, with all processes of a given executive

being identical to all the other processes of that executive.

All the initialization is duplicated by all processes. A line

is added at the start of the main loop, so that each process

only calls the sub-module if the remainder of the loop count

divided by the number of processes equals the MPI rank (a

logical identifier of an MPI process). All processes then

participate in global sums to find the total statistics of how

many sub-modules succeeded, failed, etc., as each process

keeps track of its own statistics. After the global sums, only

the process with rank 0 prints the global statistics.

mAdd writes to the output mosaic one line at a time,

reading from its input files as needed. The sequential mAdd
writes the FITS header information into the output file be-

fore starting the loop on output lines. In the parallel mAdd,

only the process with rank 0 writes the FITS header in-

formation, then it closes the file. Now, each process can

carefully seek and write to the correct part of the output

file, without danger of overwriting another process’s work.

While the executives were written to divide the main loop

operations in a round-robin fashion, it makes more sense

to parallelize the main mAdd loop by blocks, since it is

likely that a given row of the output file will depend on the

same input files as the previous row, and this can reduce the

amount of input I/O for a given process.

Note that there are two modules that can be used to build

the final output mosaic, mAdd and mAddExec, and both

can be parallelized as discussed in the previous two para-

graphs. At this time, we have just run one or the other, but

it would be possible to combine them in a single run.

A set of system tests are available from the Montage web

site. These tests, which consist of shell scripts that call the

various Montage modules in series, were designed for the

single-processor version of Montage. The MPI version of

Montage is run similarly, by changing the appropriate lines

of the shell script, for example, from:

mProjExec arg1 arg2 ...

to:

mpirun -np N mProjExecMPI arg1 arg2 ...

No other changes are needed. When this is run on a queue

system, some number of processors will be reserved for the

job. Some parts of the job, such as mImgtbl, will only use

one processor, and other parts, such as mProjExecMPI,

will use all the processors. Overall, most of the processors

are in use most of the time. There is a small bit of over-

head here in launching multiple MPI jobs on the same set

of processors. One might change the shell script into a par-

allel program, perhaps written in C or Python, to avoid this

overhead, but this has not been done for Montage.

The processing part of this approach is not very different

from what might be done on a cluster that is not part of a

grid. In fact, one might choose to run the MPI version of

Montage on a local cluster by logging in to the local clus-

ter, transferring the input data to that machine, submitting

a job that runs the shell script to the queuing mechanism,

and finally, after the job has run, retrieving the output mo-

saic. Indeed, this is how the MPI code discussed in this

paper was run and measured. The discussion of how this

code could be used in a portal is believed to be completely

correct, but has not been implemented and tested.

3.4 Grid-enabling Montage with Pegasus

Pegasus (Planning for Execution in Grids) is a frame-

work that enables the mapping of complex workflows onto

distributed resources such as the grid. In particular, Pegasus

maps an abstract workflow to a form that can be executed

on the grid using a variety of computational platforms, from

single hosts to Condor pools to compute clusters to the Ter-

aGrid. The Pegasus framework allows users to customize

the type of resource and data selections performed as well

as to select the information sources. Pegasus was developed

as part of the GriPhyN Virtual Data System [16].

Abstract workflows describe the analysis in terms of

logical transformations and data without identifying the

resources needed to execute the workflow. The abstract

workflow for Montage consists of the various application

components shown in Figure 2. The nodes of the ab-

stract workflow represent the logical transformations such

as mProject, mDiff and others. The edges represent the

data dependencies between the transformations. For exam-

ple, mConcatFit requires all the files generated by all the

previous mFitplane steps.
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3.4.1 Mapping application workflows

Pegasus maps the abstract workflow description to an exe-

cutable form by finding suitable resources, the data that is

used in the workflow, and the necessary software. It con-

sults various grid information services to find this informa-

tion. In the following description, we illustrate the Pegasus

framework configured to use a specific set of information

sources. Pegasus uses the logical filenames referenced in

the workflow to query the Globus Replica Location Service

(RLS) [17] to locate replicas of the required data, assuming

that data may be replicated across the grid. Given a set of

logical filenames, RLS returns a corresponding set of phys-

ical file locations. After Pegasus derives new data products,

it registers them into the RLS as well (unless otherwise di-

rected.) Intermediate data products can also be registered.

In order to be able to find the location of the logi-

cal transformations defined in the abstract workflow, Pe-

gasus queries the Transformation Catalog (TC) [18], using

the logical transformation names. The catalog returns the

physical locations of the transformations (on possibly sev-

eral systems) and the environment variables necessary for

the proper execution of the software. Pegasus queries the

Globus Monitoring and Discovery Service (MDS) [19] to

find the available resources and their characteristics such

as the load, the scheduler queue length, and available disk

space. The information from the TC is combined with the

MDS information to make scheduling decisions. When

making resource assignments, Pegasus prefers to schedule

the computation where the data already exist; otherwise, it

makes a random choice or uses a simple scheduling tech-

nique. Additionally, Pegasus uses MDS to find information

about the location of the GridFTP servers [20] that can per-

form data movement, job managers [21] that can schedule

jobs on the remote sites, storage locations, where data can

be pre-staged, shared execution directories, the RLS into

which new data can be registered, site-wide environment

variables, etc. This information is necessary to produce

the submit files that describe the necessary data movement,

computation and catalog updates.

The information about the available data can be used

to optimize the concrete workflow. If data products de-

scribed within the abstract workflow already exist, Pegasus

can reuse them and thus reduce the complexity of the con-

crete workflow. In general, the reduction component of Pe-

gasus assumes that it is more costly to execute a component

(a job) than to access the results of the component if that

data is available. For example, some other user may have

already materialized (made available on some storage sys-

tem) part of the entire required dataset. If this information is

published into the RLS, Pegasus can utilize this knowledge

and obtain the data, thus avoiding possibly costly computa-

tion. As a result, some components that appear in the ab-

stract workflow do not appear in the concrete workflow.

Pegasus also checks the feasibility of the abstract work-

flow. It determines the root nodes of the abstract workflow

and queries the RLS for the input files for these compo-

nents. The workflow can only be executed if these files can

be found and if they are accessible.

The final result produced by Pegasus is an executable

workflow that identifies the resources where the computa-

tion will take place. The concrete, executable workflow

also has data transfer nodes (for both stage-in and stage-

out of data), data registration nodes that can update various

catalogs on the grid (for example, RLS), and nodes that can

stage-in statically linked binaries.

3.4.2 Workflow execution

The concrete workflow produced by Pegasus is in the form

of submit files that are given to DAGMan and Condor-G

for execution. The submit files indicate the operations to be

performed on given remote systems and the order in which

the operations need to be performed. Given the submit files,

DAGMan submits jobs to Condor-G for execution. DAG-

Man is responsible for enforcing the dependencies between

the jobs defined in the concrete workflow.

In case of job failure, DAGMan can retry a job a given

number of times. If that fails, DAGMan generates a rescue

workflow that can be potentially modified and resubmitted

at a later time. Job retry is useful for applications that are

sensitive to environment or infrastructure instability. The

rescue workflow is useful in cases where the failure was

due to lack of disk space that can be reclaimed or in cases

where totally new resources need to be assigned for exe-

cution. Obviously, it is not always beneficial to map and

execute an entire workflow at once, because resource avail-

ability may change over time. Therefore, Pegasus also has

the capability to map and then execute (using DAGMan)

one or more portions of a workflow [12].

4 Comparison of approaches

Here we discuss the advantages and disadvantages of

each approach, as well as the performance of the two ap-

proaches, where there are differences in performance.

4.1 Starting the job

We first need to choose a set of compute resources. In

both the MPI and Pegasus cases, the user can choose from

a number of sets of resources. In the MPI case, the user

must choose a single set of processors that share a file sys-

tem. In the Pegasus case, the user can give Pegasus a set

of resources to choose from, since transfer of files between

processors can be automatically handled by Pegasus. Pega-

sus is clearly more general. Here, so that we can compare

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



performance, we use a single set of processors on the Tera-

Grid cluster described previously as the benchmark system.

4.2 Data and code stage-in

In either approach, the need for both data and code stage-

in is similar. The Pegasus approach has clear advantages, in

that the Transformation Catalog can be used to locate both

code which has already been retrieved from archives as well

as executables for a given machine. Pegasus can use RLS

to locate the input data. Next, Pegasus can stage the code

and data into an appropriate location. In the MPI approach,

the user must know where the executable code is, which is

not a problem when the code is executed by the portal, as

it then is the job of the portal creator. The issue of reuse of

data can also be handled by a local cache, though this is not

as general as the use of RLS.

In any event, input data will sometimes need to be re-

trieved from an archive. In the initial version of the portal

discussed in this paper, we use the IPAC 2MASS list ser-

vice, but in the future, we will use the Simple Image Access

Protocol (SIAP) [22], which returns a table containing a list

of files (URLs) that can be retrieved.

4.3 Building the mosaic

With the MPI approach, a job containing a shell script

is submitted to the queue. Each command in the script is

either a sequential or parallel command to run a step of the

mosaic processing. The script will have some queue de-

lay, then will start executing. Once it starts, it runs until

it finishes with no additional queue delays. The script it-

self would be generated by the portal. It does not contain

any detail on the actual data files, just the directories. The

sequential commands in the script examine the data directo-

ries and instruct the parallel jobs about the actual file names.

The Pegasus approach differs in that the initial work is

more complex, but the work done on the compute nodes

is much more simple. For reasons of efficiency, a pool of

processors is allocated from the parallel machine by use of

the queue. Once this pool is available, Condor-Glidein [23]

is used to associate this pool with an existing Condor pool.

Condor DAGMan then can fill the pool and keep it as full

as possible until all the jobs have been run. The decision

about what needs to be run and in what order is done by the

portal, where the mDAG module builds the abstract DAG,

and Pegasus then builds the concrete DAG.

Because the queuing delays are one-time delays for both

methods, we do not discuss them any further. The ele-

ments for which we discuss timings below are the sequen-

tial and parallel jobs for the MPI approach, and the mDAG,

Pegasus, and compute modules for the Pegasus approach.

4.3.1 MPI timing results

The timing results of the MPI version of Montage are shown

in Figure 4. The total times show in this figure include both

the parallel modules (the times for which are also shown

in the figure) and the sequential modules (the times for

which are not shown in the figure, but are relatively small.)

The end-to-end runs of Montage involved running the mod-

ules in this order: mImgtbl, mProjExec, mImgtbl,

mOverlaps, mDiffExec, mFitExec, mBgModel,

mBgExec, mImgtbl, mAddExec.

Figure 4. Performance of MPI version of Mon-

tage building a 6 × 6 degree mosaic.

MPI parallelization reduces the one processor time of

453 minutes down to 23.5 minutes on 64 processors, for a

speedup of 19. Note that with the exception of some small

initialization and finalization code, all of the parallel code is

non-sequential. The main reason the parallel modules fail

to scale linearly as the number of processors is increased is

I/O. On a system with better parallel I/O, one would expect

to obtain better speedups; the situation where the amount of

work is too small for the number of processors has not been

reached, nor has the Amdahl’s law limit been reached.

Note that there is certainly some variability inherent in

these timings, due to the activity of other users on the clus-

ter. For example, the time to run mImgtbl should be the

same in all cases, since it is always run on a single pro-

cessor. However, the measured results vary from 0.7 to 1.4

minutes. Also, the time for mDiffExec on 64 processors

is fairly different from that on 16 and 32 processors. This

appears to be caused by I/O load from other jobs running

simultaneously with Montage. Additionally, since some of

the modules’ timings are increasing as the number of pro-
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cessors is increased, one would actually choose the fastest

timing and run the module on only the number of processors

that were used for that timing. For example, mBgExec on

this machine should only be run on 16 processors, no matter

how many are used for the other modules.

These timings are probably close to the best that can be

achieved on a single cluster, and can be thought of as a

lower bound on any parallel implementation, including any

grid implementation. However, there are numerous limi-

tations to this implementation, including that a single pool

of processors with shared access to a common file system

is required, and that any single failure of a module or sub-

module will cause the entire job to fail, at least from that

point forward. The Pegasus approach discussed in the next

section can overcome these limitations.

4.3.2 Pegasus timing results

When using remote grid resources for the execution of the

concrete workflow, there is a non-negligible overhead in-

volved in acquiring resources and scheduling the computa-

tion over them. In order to reduce this overhead, Pegasus

can aggregate the nodes in the concrete workflow into clus-

ters so that the remote resources can be utilized more effi-

ciently. The benefit of clustering is that the scheduling over-

head (from Condor-G, DAGMan and remote schedulers) is

incurred only once for each cluster. In the following re-

sults we cluster the nodes in the workflow within a work-

flow level (or workflow depth). In the case of Montage,

the mProject jobs are within a single level, mDiff jobs

are in another level, and so on. Clustering can be done dy-

namically based on the estimated run time of the jobs in the

workflow and the processor availability.

Figure 5 shows the end-to-end time taken to create

(mDAG and Pegasus) and execute (runtime) the concrete

workflow to construct a 6 × 6 degree mosaic. As previ-

ously mentioned, Condor Glidein is used to acquire the re-

sources. Once the resources are acquired, they are available

for executing the workflow and there is no queuing delay

at the remote resource. The workflow was executed using

DAGMan running on a host at USC Information Sciences

Institute. The time taken to transfer the input data and the

output mosaic is not included in this figure. These mea-

surements were made using Montage version 3.0 5. In this

version mDiff and mFitplane are also available as a sin-

gle module called mDiffFit, which has been used in the

timing results shown. The figure shows the time taken in

minutes for DAGMan to execute the workflow as the num-

ber of processors are increased. The nodes in the work-

flow were clustered so that the number of clusters at each

level of the workflow was equal to the number of proces-

sors. As the number of processors is increased and thus the

number of clusters increases, the Condor overhead becomes

Figure 5. Times for building and executing the

concrete workflow for creating a 6× 6 degree

mosaic.

the dominating factor. DAGMan takes approximately 1 sec-

ond to submit each cluster into the Condor queue. Condor’s

scheduling overhead adds additional delay. As a result we

do not see a corresponding decrease in the workflow exe-

cution time as we increase the number of processors. Also,

as with the MPI results, the other codes running on the test

machine appear to impact these performance numbers. The

64 processor case seems to have worse performance than

the 32 processor case, but it is likely that were it rerun on a

dedicated machine, it would have better performance. This

is discussed further in the next section. Finally, there are se-

quential sections in the workflow that limit the overall par-

allel efficiency.

4.3.3 Timing discussion

Figure 6 shows a comparison of the time for the MPI run

vs. the time needed to build and run the concrete DAG, for

the benchmark problem. Notice that the performance of the

Pegasus version seems to be faster than the MPI version ex-

cept at 64 processors where the results are reversed. It is

the authors’ belief that, for large sized jobs, the measured

difference between the Pegasus and MPI runs is not signifi-

cant, and that it is due to the I/O contention caused by other

jobs running on the test platform during these runs.

To examine some of these timings in more detail, we

study the work needed to create a 1 degree square mosaic

on 8 processors, as shown in Figure 7. The first difference

is that mImgtbl is run three times in the MPI code vs. only

once in the Pegasus code, where mDAG and Pegasus are

run in advance instead of the first two mImgtbl runs. This

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



Figure 6. Times for building and executing the

concrete workflow for creating a 6× 6 degree

mosaic.

is because the DAG is built in advance for Pegasus, but for

MPI, the inputs are built on-the-fly from the files created

by previous modules. Second, one MPI module starts im-

mediately after the previous module finishes, while the Pe-

gasus modules have a gap where nothing is running on the

TeraGrid. This is the overhead imposed by DAGMan, as

mentioned in the previous section. Third, the MPI code is

almost 3 times faster for this small problem.

If we examine a larger problem, such as the 64 proces-

sor runs that create the 36 square degree test problem, as

seen in Figure 8, we see some differences. First, the over-

all times are now comparable. Second, in the Pegasus case,

the gaps between the modules are generally not noticeable,

except between mProject and mDiffFit and between

mBgModel and mBackground. Since the bars show the

range of time of 64 processes now, some of the gaps are just

hidden, while some are truly less significant. Finally, in the

Pegasus case, the mDAG and Pegasus times are substan-

tial, but the mAdd time is much shorter than in the MPI case.

Again, this is just a difference between the two implementa-

tions: mDAG allows the individual mAdd processes to open

only the relevant files in the Pegasus case, whereas in the

MPI case, the region of coverage is not known in advance,

so all mAdd instances must open all files. (Many are then

closed immediately, if they are determined to not intersect

the output tile.) The I/O overhead in the MPI case is much

larger, but the startup time is much shorter.

It is possible that a larger number of experiments run

on a large dedicated machine would further illuminate the

differences in performance between the MPI and Pegasus

approaches, but even on the heavily-loaded TeraGrid clus-

ter at NCSA, it is clear that there is no performance dif-

ference that outweighs the other advantages of the Pegasus

approach, such as fault tolerance and the ability to use mul-

tiple machines for a single large job.

4.4 Finishing the job

Once the output mosaic has been built on the compute

processors, it must be made available to the user, and the

user must be notified of this availability. The Montage por-

tal currently transfers the mosaic from the compute proces-

sors to the portal, and emails the user. In the case of Pe-

gasus, the mosaic is also registered in RLS. A user might

also get the mosaic with the aid of RLS directly. The time

required to transfer the mosaic and to notify the user are

common to both the Pegasus and MPI approaches, and thus

are not discussed here.

5 Conclusions

Montage was written as a very general set of modules

to permit a user to generate astronomical image mosaics.

Mosaics are large images that are built from multiple small

images. Montage includes modules that are used to repro-

ject images onto a common space, calculate overlaps be-

tween images, calculate coefficients to permit backgrounds

of overlap regions to be matched, modify images based

on those coefficients, and co-add images using a variety

of methods of handling multiple pixels in the same output

space. The Montage modules can be run on a single pro-

cessor computer using a simple shell script. Because this

approach can take a long time for a large mosaic, alterna-

tives to make use of the grid have been developed. The first

alternative, using MPI versions of the computational inten-

sive modules, has good performance but is somewhat lim-

ited. A second alternative, using Pegasus and other grid

tools, is more general and allows for the execution on a

variety of platforms without having to change the underly-

ing code base, and appears to have real-world performance

comparable to that of the MPI approach for reasonably large

problems. Pegasus allows various scheduling techniques to

be used to optimize the concrete workflow for a particu-

lar execution platform. Other benefits of Pegasus include

opportunistically taking advantage of available resources

(through dynamic workflow mapping) and to taking advan-

tage of pre-existing intermediate data products.
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Figure 7. Timing of modules for creating a 1 × 1 degree mosaic on 8 processors. The MPI modules
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