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ABSTRACT

Large-scale parallel computation can be an enabling resource in many areas of engineering and science if
the parallel simulation algorithm attains an appreciable fraction of the machine peak performance, and
if undue cost in porting the code or in developing the code for the parallel machine is not incurred. The issue
of code parallelization is especially significant when considering unstructured mesh simulations. The
unstructured mesh models considered in this paper result from a finite element simulation of electromagnetic
fields scattered from geometrically complex objects (either penetrable or impenetrable.) The unstructured
mesh must be distributed among the processors, as must the resultant sparse system of linear equations.
Since a distributed memory architecture does not allow direct access to the irregularly distributed unstruc-
tured mesh and sparse matrix data, partitioning algorithms not needed in the sequential software have
traditionally been used to efficiently spread the data among the processors. This paper presents a new
method for simulating electromagnetic fields scattered from complex objects; namely, an unstructured finite
element code that does not use traditional mesh partitioning algorithms. ( 1998 John Wiley & Sons, Ltd.
This paper was produced under the auspices of the U.S. Government and it is therefore not subject to
copyright in the U.S.
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1. INTRODUCTION

Large-scale parallel computation can be an enabling resource in many areas of engineering and
science. The available memory capacity and computational speed of large distributed memory
machines can allow the simulation of complicated engineering components if the simulation
algorithm attains an appreciable fraction of the machine peak performance, and if undue cost in
porting the code or in developing the code for the parallel machine is not incurred. The issue of
code parallelization is especially significant when considering unstructured mesh simulations.
The unstructured mesh models considered in this paper result from a finite element simulation of
electromagnetic fields scattered from geometrically complex objects (either penetrable or impen-
etrable.) The finite element model is used to capture the complex materials involved in the
simulation, and to maintain fidelity of the structure’s geometry. The unstructured mesh must be
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distributed among the processors, as must the resultant sparse system of linear equations. Since
a distributed memory architecture does not allow direct access to the irregularly distributed
unstructured mesh and sparse matrix data, partitioning algorithms which are not needed in the
sequential software have traditionally been used to efficiently spread the data among the processors.
This paper presents a new method for simulating electromagnetic fields scattered from complex
objects, namely, an unstructured finite element code that does not use traditional mesh partitioning
algorithms. The complete software package is implemented on the Cray T3D massively parallel
processor using both Cray Adaptive FORTRAN (CRAFT) compiler constructs to simplify por-
tions of the code that operate on the irregular data, and optimized message passing constructs on
portions of the code that operate on regular data and require optimum machine performance.

The finite element modeling software begins with mesh data constructed on a workstation
using a commercially available CAD meshing package. Because the electromagnetic scattering
simulation is an open region problem (scattered fields exist in all space to infinity), the mesh must
be truncated at a surface that maintains accuracy in the modeled fields, and limits the volume of
free space that is meshed. Local, absorbing boundary conditions can be used to truncate the
mesh, but these may be problematic because they become more accurate as the truncating surface
is removed from the scatterer, requiring greater computational expense, and they may be problem-
dependent. The approach outlined in this paper solves the three-dimensional vector Helmholtz
wave equation using a coupled finite element-integral equation method. A specific integral
equation (boundary element) formulation that efficiently and accurately truncates the computa-
tional domain is used. A partitioned system of equations results from the combination of
discretizing the volume in and around the scatterer using the finite element method, and
discretizing the surface using the integral equation method. This system of equations is solved
using a two-step solution, combining a sparse iterative solver and a dense factorization method.
The matrix equation assembly, solution, and the calculation of observable quantities are all
computed in parallel, utilizing varying number of processors for each stage of the calculation.

Various approaches have been taken for parallel implementations of unstructured mesh
simulations. A short and general overview of all stages in the simulation of high-temperature
superconductors—mesh generation and refinement, domain partitioning, and linear system
solution—can be found in Reference 1. Similarly, approaches have been reported for simulations
in structural mechanics using a coarse-grain machine2 and in a review article for simulations in
fluid dynamics using a data parallel computer.3 An early implementation of a nodal-based finite
element implementation simulating scattered electromagnetic fields on a data parallel computer
was given in Reference 4. An implementation on a shared virtual memory machine of a finite
element method using absorbing boundary conditions, simulating scattered electromagnetic
fields was outlined in Reference 5. The application of finite volume methods using unstructured
meshes for electromagnetic modelling of both guided wave structures and scatterers was
presented in References 6 and 7. These approaches either employ specific mesh partitioning
algorithms to decompose the mesh onto the distributed memory machine, or machine architec-
ture and compiler attributes specific to the computer. In References 1, 2, and 7, bisection
partitioning algorithms were used. In References 3 and 4, using a data parallel computer,
compiler constructs replaced the partitioning algorithms, and in Reference 5, a global address
space available on the Kendall Square Research machine was used to distribute the mesh.
A specialized partitioning algorithm for thin planar structures was employed in Reference 6.

Rather than employing mesh partitioning methods, the emphasis in this work is placed on
decomposition of the resultant sparse matrix entries among the distributed memory processors.
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Though there is a relationship between the geometric mesh data and the assembled sparse matrix
entries, it is the sparse matrix that is operated on directly in the iterative solver used in most large
finite element simulations. Specifically, a distributed sparse matrix-dense vector multiply is the
computational component that must be efficiently computed at each step of the iterative
algorithm. It is therefore essential that the decomposition of matrix elements be completed in
a manner that allows an efficient matrix-vector multiplication. The row slab matrix decomposi-
tion used in this work strikes a balance between near perfect data and computational load
balance among the processors, minimal but not perfectly optimal communication of data in the
matrix-vector multiply operation, and scalability of simulating larger-sized problems on greater
numbers of processors.

2. THE COUPLED FINITE ELEMENT-INTEGRAL EQUATION MODEL

To practically compute a solution to exterior electromagnetic scattering problems, the domain
must be truncated at some finite surface where the Sommerfeld radiation condition is enforced,
either approximately or exactly. Approximate methods attempt to truncate the mesh using only
local field information at each grid point, whereas exact methods are global, needing information
from the entire mesh boundary.8 The global method used here couples a three-dimensional finite
element solution interior to the bounding surface with an efficient integral equation solution that
exactly enforces the Sommerfeld radiation condition. The problem domain is divided into interior
and exterior regions, separated at the mesh boundary (Figure 1). The unknown sources in the
integral equation are directly related to the tangential fields on the mesh boundary, and the
radiation condition is implicitly enforced exactly through the use of the free-space Green’s
function. Fields in the two regions are coupled by enforcing boundary conditions on tangential
field components at the mesh boundary, thereby producing a unique and exact solution to
Maxwell’s equations in both regions.

The bounding surface chosen is the minimal surface of revolution that fits around the scatterer.
The integral equation is discretized using sub-domain basis functions along the surface of
revolution generator, and Fourier harmonics azimuthally, to greatly limit the storage necessary in
the integral equation component of the model. An outline of this formulation is presented below.
A detailed presentation can be found in Reference 9, with further results presented in Reference
10. An extension to radiation modeling is given in Reference 11.

Figure 1. Geometry of scattering problem showing interior and exterior regions of model
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2.1. Finite element representation

In the interior region, a finite element discretization of a weak form of the wave equation is used
to model the geometry and fields, leading to
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HM is the magnetic field (the HM -equation is used in this paper; a dual EM -equation can also be
written), ¼M is a testing function, the asterisk denotes conjugation, and EM ]nN is the tangential
component of EM on the surface of revolution S (L»). Equation (1) represents the fields internal to
and on the surface S. These fields will be modelled using a set of properly chosen finite element
basis functions. In equation (1), e
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in which j (r) are the tetrahedral shape functions and indices (m, n) refer to the two nodal points of
each edge. These elements are used for both expansion and testing (Galerkin’s method) in the
finite element domain.

2.2. Combined-field integral equation representation

In the formulation of the integral equation, fictitious electric (JM "nL ]HM ) and magnetic
(MM "!nL ]EM ) surface currents, equivalent to the tangential magnetic and electric fields just on
the exterior of the boundary surface, are defined on the boundary. These currents produce the
scattered fields in the exterior region. A linear combination of the electric field integral equation
(EFIE) and the magnetic field integral equation (MFIE) is used in this formulation, and it can be
succinctly expressed as
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where Z
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are the integro-differential operators used in defining the combined field
integral equation and »

i
represents the incident field.

The integral equation on the surface of revolution is discretized by a set of basis functions with
piecewise linear variation along the surface of revolution generator, and with an azimuthal
Fourier modal variation. Applying Galerkin’s method, both expansion and testing functions are
given as
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in which ¹
k
(t) is a triangle function spanning the kth annulus on the surface of revolution surface.

The variables t and / refer to the local surface of revolution co-ordinates, and o is the distance
from the z-axis to a point on the surface of revolution. Each annulus spans two segments along
the generator, each referred to as a strip. Adjacent triangles overlap on one segment.
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2.3. Enforcing boundary conditions

At the artificial surface of revolution separating the interior and exterior regions, boundary
conditions on the continuity of tangential field components must be enforced. Three equations
are written for the three unknown field quantities of interest, the magnetic field HM internal to the
volume » and the electric and magnetic surface currents, JM and MM , on the boundary. Continuity
of the magnetic field across the boundary is enforced in a weak sense

PPL»
(nL ]HM !JM ) ) (nL ]ºM *) ds"0 (5)

where ºM is a testing function. Continuity of the electric field across the boundary is made implicit
in the finite element equation in the surface integral term nL ]EM by replacing this term with MM .

The surface integral in (1) and the first component of the integral in (5) are termed the coupling
integrals, since with a convenient choice of the unknown in the first and of the testing function in
the second, they are made to couple interior and exterior field representations. To evaluate these
terms, the finite element basis function ¼M is approximately evaluated on the portion of surface of
revolution projected from the triangular facet of the tetrahedron onto a strip. Such projections
are curved triangles, curved quadrilaterals, or curved pentagons. The evaluation of the integrals
are done numerically. These coupling integrals, as well as the discretization of the second surface
integral in (5), complete the discretization of the problem.

2.4. Numerical solution of the linear system

Having introduced the basis and testing functions for the volume as well as the surface
unknowns, substitution into the complete set of equations yields
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The symbol - indicates the adjoint of a matrix. Note that both K and C are sparse, Z0 is
tri-diagonal, and Z

M
and Z

J
are banded. In particular, the system is complex, non-symmetric, and

non-Hermitian. The sparsity of the system (6) is shown in Figure 2 for a case with only several
hundred finite element unknowns. For larger, representative cases, the number of finite element
unknowns will grow into hundreds of thousands while the number of columns in C will be several
hundred to several thousand.
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Figure 2. Scatter plot graphically showing structure of system of equations. Darkened spaces indicate non-zero matrix
entries

The parallel solution to this matrix equation system is completed in two steps. Initially, H in
the first equation in (6) is written as H"!K~1CM and substituted into the second equation
resulting in
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where ZK"!CsK~1C. This relatively small system is then solved directly for M and J. By
solving the system in two steps, the interior solution is decoupled from the incident field V

*
,

allowing for efficient solutions when many excitation fields are present as in monostatic radar
cross-section simulations.

The relative numbers of unknowns in H and M (or J) makes the calculation of K~1C the major
computational expense. This operation is the solution of a system of equations, KX"C, where
C is a rectangular matrix with a potentially large number of columns in the case of electrically
large scatterers. The solution is accomplished by using a symmetric variant of the quasi-minimum
residual iterative algorithm. The resulting overall matrix (8) is treated as being dense, and the
solution of this second system is accomplished via a direct dense LU decomposition, since its size
is relatively small.

3. UNSTRUCTURED SPARSE MATRIX DECOMPOSITION

The solution of the large sparse system is the central component of the finite element simulation.
Traditionally, the dependence between mesh data and the resultant sparse matrix data has been
exploited in the development of mesh partitioning algorithms.12—15 These algorithms break the
physical mesh or its graph into contiguous pieces that are then read into each processor of
a distributed memory machine. The mesh pieces are generated to have roughly the same number
of finite elements, and to some measure, each piece has minimal surface area. Since the matrix
assembly routine generates non-zero matrix entries that correspond to the direct interconnection
of finite elements (elements that do not physically touch do not generate a matrix entry), the mesh
partitioning algorithm attempts to create a load balance of the sparse system of equations.
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Processor communication in the algorithm that solves the sparse system is meant to be limited by
the ability to minimize the surface area of each mesh piece.

The algorithm for mesh partitioning typically requires less computational time than the rest of
the finite element simulation, but due to the complexity of the algorithm needed to create good
load balance and minimal processor communication, the development of parallel partitioning
codes can be quite expensive. The complexity results from the irregularity of mesh data inherent
in volumetric finite element modeling. The strategy followed in this paper is to exploit the
availability of a global address space by using compiler constructs to efficiently decompose the
matrix data among processors of the Cray T3D. Because the amount of time needed to perform
the matrix decomposition is a small fraction of the overall simulation time, any minor inefficien-
cies in using the shared memory compiler constructs are relatively unimportant. The matrix
equation solution—the major time expense of the overall simulation—and the calculation of
observables are accomplished using message passing algorithms. This strategy allows the use of
global addressing constructs to simplify the high complexity but computationally inexpensive
portion of the simulation, i.e. the parallel finite element matrix assembly from mesh data, and the
use of message passing algorithms on the portions of the simulation that require high perfor-
mance. The direct decomposition of the matrix entries also results in regular data structures that
are exploited by efficient communication patterns in the iterative solver.

In the electromagnetic scattering application considered in this paper, the system of equations
under consideration is complex-valued, symmetric and non-definite. Because the system has these
properties, and because very large systems are considered (systems up to order one million) the
quasi-minimum residual iterative algorithm is used to solve the system.16 Each row (or column)
of the matrix has a number of non-zero entries, typically 16 for the elements currently being used,
and this number is constant, independent of the mesh size. The main expense of the solution
algorithm is the sparse matrix-dense vector multiply that is inherent in this as in most other
Krylov subspace iterative algorithms. The matrix decomposition used in this implementation is
based on row slabs of the sparse reordered system. The reordering algorithm is used to minimize
the bandwidth of the sparse system. As Section 4 will outline, this decomposition and reordering
is chosen to minimize communication of the overlapping vector pieces in the parallel matrix-
vector multiplication, reduce storage of the resultant dense vector pieces on each processor, and
allow for load balance in storage and computation.

Since the right-hand-side vectors in the parallel sparse matrix equation (KX"C) are the
columns of C, these columns are distributed as required by the row distribution of K. When
setting up the row slab decomposition, K is split by attempting to equalize the number of
non-zeros in each processor’s portion of K (composed of consecutive rows of K). The rows in
a given processor’s portion of K determines the rows of C that processor will contain. As an
example, if the total number of non-zeros in K is nz, a loop over the rows of K will be executed,
counting the number of non-zeros of K in the rows examined. When this number becomes
approximately nz/P (where P is the number of processors that will be used by the matrix equation
solver), the set of rows of K for a given processor has been determined, as has the set of rows of C.

The reordering is chosen to minimize and equalize the bandwidth of each row over the
system.17 Because the amount of data communicated in the matrix-vector multiplication will
depend upon the equalization of the row bandwidth, different reordering algorithms have been
examined. The generalized reverse Cuthill—McKee algorithm (in both the SPARSPAK17 and the
Gibbs—Poole—Stockmeyer18 versions) produces an ordering that minimizes system bandwidth,
and equalizes the bandwidth over each row of the matrix. Matrices resulting from objects that
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were long and thin, as well as those resulting from spherical objects have been examined. The
nested dissection ordering in Reference 15 could produce a smaller profile of the reordered
matrix, but equalization of the row bandwidth was not accomplished; row bandwidths even
approaching the matrix order were found in a few rows of the matrix.

The matrix decomposition code, termed P—SLICE, consists of a number of subroutines.
Initially, the potentially large mesh files are read (READ). Then the connectivity structure of the
sparse matrix is generated and reordered (CONNECT), followed the generation of the complex-
valued entries of K (FEM), building the connectivity structure and filling the C matrix (COUP-
LING). Finally, the individual files containing the row slabs of K and the row slabs of C must be
written to disk (WRITE). For each processor that will be used in the matrix equation solver, one
file containing the appropriate parts of both the K and C matrices is written.

3.1. Port to ¹3D using CRAF¹

Cray Research Adaptive FORTRAN (CRAFT) is used for the matrix decomposition stage of
the simulation. All large arrays are declared using CDIR$ directives to be shared in either a block
manner or a cyclic manner for the leading dimension, with non-leading dimension distributed
degenerately. Using a block distribution of a matrix of size 256 on 4 processors leads to the first 64
elements residing on processor 0, the next 64 elements on processor 1, etc. A cyclic distribution
would lead to processor 0 having elements (1, 5, 9, . . . ), processor 1 having elements (2, 6, 10, . . . ),
etc. A two-dimensional array with a degenerate distribution of the second dimension leads to all
elements of the array having a given index in the first dimension being on the same processor,
regardless of the index in the second dimension. For example, a two-dimensional array of size
(256, 10) distributed degenerately over the second dimension will have elements ((i, 1), (i, 2), . . . ,
(i, 10)) all located on the same processor. Which processor this will be is dependent on the value
of i, and the method of distribution over the first dimension.

Routines which could be easily parallelized by CRAFT directives were FEM and part of
COUPLING. The directive CDIR$ DO SHARED was added to the parallelizable loops to
automatically distribute the work over all the processors. Other routines that could be executed
in parallel with a combination of CRAFT and message passing included the READ and WRITE
routines. The remaining routines (CONNECT, and a second part of COUPLING) are basically
sequential routines, where only one processor is doing the majority of the work, while using data
spread across many (usually all) processors.

Two files are read in the READ routine, one containing finite element data, and the other
containing integral equation data. The finite element file is at least an order of magnitude larger
than the integral equation file, and is read by 4 processors. By using these 4 processors, the time of
the READ routine is reduced roughly by a factor of 3 as compared to reading the file with
1 processor. Further reduction in this time may be possible; however, this factor of 3 is currently
sufficient. In the WRITE algorithm, data is assembled on each processing element and written to
disk. On the T3D, it is faster to assemble a local array and write out that data than to write out
a distributed array directly, since as the number of processors increases, more writes of smaller
amounts of data are being performed, and disk and network contention develops. Scaling beyond
this point quickly leads to diminishing returns from each processor.

Figures 3 and 4 show the performance of P—SLICE over varying numbers of processors for two
different problems. The number of edges is the number of finite element unknowns in the
problem. It may be observed that for the routines that have been parallelized, doubling the
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Figure 3. Computation time and scaling for a relatively small simulation (dielectric cylinder with 43 791 edges,
radius"1 cm, height"10 cm, permittivity"4)0 at 2)5 GHz). First column shows time for single processor T90. Times

on T90 for CONNECT and FEM have been combined

Figure 4. Computation time and scaling for a relatively large simulation (dielectric cylinder with 579 993 edges,
radius"1 cm, height"10 cm, permittivity"4)0 at 2)5 GHz). First column shows time for single processor T90. Times

on T90 for CONNECT and FEM have been combined

number of processors reduces the amount of time by a factor of approximately two. For
routines that are sequential, where only one processor is doing the work using the other
processors’ data, the time goes up very slightly as the number of processors for the overall code
are increased. This is due strictly to communication latency. As the number of processors
increases, the percentage of array elements which are not local increases, and the time to load or
store these elements is longer than the time to load or store local elements. The I/O time should
have roughly the same behaviour, but for practical tests the I/O time is more dependent on the
I/O load of the other T3D processors and the load on the front-end YMP that is between the T3D
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and the disks than the number of T3D processors being used in P—SLICE. It is clear that the
routines that benefit most from the parallel implementation on the T3D are COUPLING and
WRITE.

4. PARALLEL SOLUTION OF PARTITIONED SYSTEM

As outlined above, the partitioned system of equations is solved in two steps, namely P—SOLVE
and P—FIELD. Initially, the quasi-minimum residual algorithm16 is used to solve the sparse
system of equations KX"C, resulting in the reduced sub-matrix Z

K
. The parallel quasi-

minimum residual solver developed for this application operates on matrix data decomposed by
row slabs in P—SLICE after reordering (Figure 5 shows matrix structure before and after
reordering). The machine is logically considered to be a linear array of processors, with each slab
of data residing in one of the processors. C and X are also decomposed by row slabs, correspond-
ing to the row partition of the matrix. Central components of the quasi-minimum residual
algorithm that are affected by the use of a distributed memory machine are the parallel sparse
matrix-dense vector multiply, and dot products and norm calculations that need vector data
distributed over the machine. The dominant component is the matrix-vector multiplication,
accounting for approximately 80 per cent of the time required to run P—SOLVE.

A parallel library of the needed level-one BLAS routines was developed using CRAY T3D
shmem—put and shmem—get message passing. The routines required by the quasi-minimum
residual algorithm are CDOTU and SCNRM2, and the parallel implementation of these was
trivial, consisting of a local BLAS call to calculate each processor’s contribution to the result, and
a call to a global sum routine to calculate the final result.

4.1. Parallel sparse matrix-dense vector multiplication

The parallel sparse matrix-dense vector multiply involves multiplying the K matrix that is
distributed across the processors in row slabs, each containing a roughly equal number of

Figure 5. Original matrix structure (left) and after reordering (right). Filled spots indicate non-zero entries of matrix
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Figure 6. Local sparse matrix-dense vector multiplication graphically displayed

non-zero elements, and a dense vector x, that is also distributed over the processors, to form
a product vector y, distributed as is x (Figure 6). Since the K matrix has been reordered for
minimum bandwidth, the minimum and maximum column indices of the slab are known. If the
piece of the dense vector x local to this processor has indices within this extent of column indices,
the multiplication may be done locally and the resultant vector y will be purely local. In general,
the local row indices of the dense vector x do not contain the range of column indices; therefore,
a communication step is required to obtain the portions of the multiplication vector x required by
the column indices of the K matrix. This communication step only requires data from a few
processors to the left and right. The exact number of processors communicating data is dependent
on the row bandwidth of the local piece of K, and the number of processors being used. In the
simulations considered, the number of processors communicating data is typically one or two in
each direction on scaled problems.

This communication could be performed using either shmem—get or shmem—put. These are
one-way communication calls where the processor from whose memory the data is being
gathered or to whose memory the data is being stored, respectively, is not interrupted by the
communication. The shmem—get formulation is more intuitive and simpler to program, but
the communication bandwidth of the shmem—put routine on the T3D is substantially higher
than the communication bandwidth of the shmem—get routine. For this reason, the shmem—put
formulation is used. This formulation requires the cache to be flushed to maintain cache
coherency, but the resulting performance of the matrix—vector multiplication is still 15 per cent
higher than the performance obtained using the shmem—get formulation.

As described previously, the K matrix is stored in row slabs using row-compressed storage. As
K is symmetric, this is equivalent to a column slab decomposition using column-compressed
storage. K may be used in either way in the matrix-vector multiplication. In this step, a non-zero
in column i requires x(i ) to be obtained, and a non-zero in row j will produce a partial result for
y( j ). This implies that K stored in column slabs will require only communication of portions of
y non-local to the processor after the local portion of the multiply, and similarly, K stored in row
slabs will require communication only to gather x before the local portion of the multiply. Since
similar amounts of communication are required using either storage scheme, the scheme that
minimizes the time spent in local work has been chosen for implementation. This is the row slab
decomposition of K, because the row-compressed storage scheme better reuses the T3D proces-
sor’s local cache, and therefore has better overall performance.
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Figure 7. Graph of communication load balance for parallel matrix vector multiply, 271 158 edge dielectric cylinder, 32
processors

Figure 8. Graph of communication load balance for parallel matrix vector multiply, 579 993 edge cylinder, 128 processors

4.2. Performance and scalability of parallel sparse matrix-dense vector multiplication

The goal of the combination reordering-partitioning strategy discussed above is to minimize as
well as equalize communication in P—SOLVE, while retaining memory load balance. The
partitioning chosen clearly succeeds in evenly dividing the data among the processors; Figures
7 and 8 show the relative communication time of the processors.

Figure 7 shows results representative of the majority of the cases that have been run. All
processors, excepting those on the ends of the linear processor array, have a relatively similar
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amount of communication, and since the communication is synchronized, all processors will
require as much time as the one that uses the most time. Only the two end processors will be idle
very long at the barrier. For this case, all processors except the first and last have to communicate
with two other processors, one to the left and one to the right.

Figure 8 shows the other possible class of results, shared by a minority of cases that have been
run. Again, the two end processors are using less time for communication than the majority of
processors. However, in this example, a small subset of the processors are using more time in
communication than the average processor. All the processors except those in this subset have to
wait a substantial amount of time at the barrier, and the speed per processor of this run is lower
than that of the first example. Again in this example, all processors but the first and last have to
communicate with at least two other processors, one to the left and one to the right, but here, the
processors in the subset that are spending more communication time are communicating with
possibly two processors in either direction. The issue in these few cases is that the decomposition
of the K matrix was performed entirely based on storage load balance, with the assumption that
the reordering would equalize the row bandwidth and create communication load balance. This
assumption is generally valid, as shown in Figure 7, though not always, as shown in Figure 8.

Another factor in the performance of the parallel matrix-vector multiplication is the percentage
of communication. This is mainly related to the number of processors to the left and right that
each processor must communicate, and as discussed above, the maximum number that any
processor must communicate with. It is clear that running a fixed size problem on an increasing
number of processors will generate a growing amount of communication. The amount of
communication is a function of how finely the K matrix is decomposed, since its maximum row
bandwidth after reordering is not a function of the number of processors used in the decomposi-
tion. If the maximum row bandwidth is m and each processor in a given decomposition has
approximately m rows of K, then most processors will require one processor in each direction for
communication. If the number of processors used for the distribution of K is doubled, each
processor will have approximately m/2 rows of K. Since the row bandwidth does not change, each
processor will now require two processors in each direction for communication. But since the
number of floating point operations required has not changed, the communication percentage
should roughly double. This can be seen in Figure 9, which shows communication percentage
versus number of processors, for four problem sizes.

Figure 10 shows the local rate of operations/second for the parallel matrix vector multiplica-
tion. It is measured after communication has been completed. It can be seen that the performance
of this operation is roughly constant, and is not easily identifiable as a function of problem size or
number of processors. To a limited extent, a problem which involved more data on each
processor will run slightly faster than would a problem with less data on each processor, but as
Figure 10 demonstrates, this is not necessarily true. The storage of the data and how it fits in the
T3D’s cache is more important than the amount of data, and this forces the local performance
rate not to be a simple function of problem size per processor.

Shown in Figure 11 are plots of time to convergence on different numbers of processors for five
different problems. The number of unknowns in the finite element mesh and the number of
columns of C are indicated on the plots. The quasi-minimum residual algorithm was stopped
when the normalized residual was reduced three orders of magnitude for each column of C. With
an initial guess being the zero vector, this results in a normalized residual of 0)1 per cent, a value
that is sufficient for this scattering problem. Given a fixed communication percentage and a fixed
rate for local work, doubling the number of processors for a given problem would halve the total
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Figure 9. Percentage of communication versus number of processors for parallel matrix—vector multiplication, for four
different size (number of edges) meshes of dielectric cylinder

Figure 10. Local operation rate versus number of processors for parallel matrix—vector multiplication, for four different
size (number of edges) meshes of the dielectric cylinder

solution time. The curves in Figure 11 do not drop linearly at this rate because these assumptions
are not met, as shown by Figures 9 and 10. The decreased amount of work per processor causes
the curves to level off as the number of processors increases.
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Figure 11. Time of convergence for five different problems. The time shown is the total execution time for the solver on
different numbers of processors. The C matrix had 116 columns in each case

4.3. Additional work in P—SO¸»E

After each column of K~1C is computed using the quasi-minimum residual algorithm, it must
be multiplied by Cs to obtain the equivalent column of Zk . Each of these multiplication requires
a global communication, since C is distributed over the T3D by row slabs. To reduce the number
of global communications, after a number of columns of K~1C are computed, these are multiplied
by Cs, and the columns of Zk obtained are written out sequentially to disk. The original
quasi-minimum residual algorithm solved a single solution vector at a time. A pseudo-block
(multiple right-hand-side) quasi-minimum residual variant was written, which performs each
quasi-minimum residual iteration on some number of columns of C simultaneously. As the
residual of each column of K~1C converges below the threshold, that column is no longer used in
the quasi-minimum residual algorithm. This variant performs the same number of floating point
operations as the single right-hand-side quasi-minimum residual algorithm, but the K matrix is
required to be loaded from memory much less often. This leads to a time savings of 10—15 per cent
in P—SOLVE.

5. CALCULATION OF OBSERVABLES

The final code of the simulation, P—FIELD, completes the matrix calculation shown in equation
(8) and computes observable quantities (radar cross-section, near fields, etc.) After the ZM , ZJ and
Z0 sub-matrices and V

*
vector (s) are computed, and the sub-matrix ZK ( formed by P—SOLVE) is

read in from disk, a parallel dense matrix LU decomposition algorithm is used to solve the
reduced system.19 Since this system is much smaller than the larger sparse system solved above,
the Z matrices may be distributed on a smaller set of processors, chosen to optimize the solve
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Figure 12. Monostatic radar cross section for dielectric cylinder with radius"1)0 cm, height"10)0 cm, relative
permittivity"4)0 at 2)5 GHz.

time. The time needed to solve this system compared to the sparse system is a small fraction,
typically less than 1 per cent.

The radar cross-section is found from the mesh-surface-equivalent currents MM and JM . This
calculation—an integral over the surface—is easily parallelized on the processors executing
P—FIELD. If the radar cross-section for more than one excitation vector is needed (monostatic),
a block of solution vectors are found, and a block of radar cross-sections calculated. For
completeness Figure 12 shows the radar cross-section for the dielectric cylinder used in the
previous results; comparison is made to the CICERO code.20 Further results of calculated
observables may be found in Reference 10.

6. DISCUSSION

Shown in Figure 13 is the comparison of time requirements of the three stages of the simulation,
for four different problem sizes. The problem simulated corresponds to the dielectric cylinder
outlined in previous results. As is clearly shown, the dominant component of the simulation is
P—SOLVE—the iterative solution of the sparse system. The matrix decomposition stage
(P—SLICE) is relatively small, while the observable calculation stage (P—FIELD) is a minor
fraction of the total time. This last stage can grow if a large number of field calculations are
required, but it will typically remain a small fraction of the matrix solution time.

Using matrix decomposition by row-slab partitioning following reordering produced data
structures that generally allowed a balanced matrix—vector multiplication in the iterative solver.
The data load balance was almost exactly uniform, while the communication overhead was
moderately small and similarly uniformly balanced over the machine for the majority of problems
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Figure 13. Comparison of time requirements for three stages of simulation for four different problem sizes. The problems
correspond to the dielectric cylinder shown in Figure 12

considered. For scaled-sized problems, the communication time was roughly 15 per cent of the
total matrix—vector multiplication time. Even bringing this expense down to zero time would not
lead to a major improvement in the overall performance of the code. However, major improve-
ments are possible in two areas: the local multiplication and the number of quasi-minimum
residual iterations.

First, the performance on the local portion of the sparse matrix-dense vector multiplication
could be improved. This is dependent on the sparse data-storage structure of the matrix and how
it is loaded into the local cache. The relative sparsity of the reordered row slab of the matrix
causes the multiplication to jump around in the cache as it loads the elements of the X vector. If
the these local row slabs were reordered in such a way as to obtain a more dense matrix, the local
performance would increase dramatically.

Second, an efficient parallel preconditioner, or block iterative solver could decrease the number
of iterations needed in the matrix equation solution. Naturally, the preconditioner must not
increase either the overhead in setting up the problem or obtaining the final solution more than it
saves by lowering the iteration count. The block solver also must not increase the time per
iteration more than the amount it saves by lowering the iteration count. These last two
approaches are currently being examined.
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