
Demonstration of the Remote Exploration and Experimentation (REE) Fault-
Tolerant Parallel-Processing Supercomputer for Spacecraft Onboard Scientific

Data Processing

Fannie Chen
Jet Propulsion Laboratory
Fannie.Chen@jpl.nasa.gov

Alvin J. Fogel
Jet Propulsion Laboratory

Alvin.J.Fogel@jpl.nasa.gov

Raphael R. Some
Jet Propulsion Laboratory

Raphael.R.Some@jpl.nasa.gov

Loring Craymer
Jet Propulsion Laboratory

Loring.Craymer@jpl.nasa.gov

Daniel S. Katz
Jet Propulsion Laboratory

Daniel.S.Katz@jpl.nasa.gov

Sean A. Upchurch
Jet Propulsion Laboratory
sau@alumni.caltech.edu

Jeff Deifik
Jet Propulsion Laboratory
Jeff.Deifik@jpl.nasa.gov

Alfred G. Silliman, Jr.
Jet Propulsion Laboratory

Alfred.G.Silliman@jpl.nasa.gov

Keith Whisnant
University of Illinois
kwhisnan@uiuc.edu

Abstract

This paper is the written explanation for a
demonstration of the REE Project’s work to-date. The
demonstration is intended to simulate an REE system that
might exist on a Mars Rover, consisting of multiple COTS
processors, a COTS network, a COTS node-level
operating system, REE middleware, and an REE
application. The specific application performs texture
processing of images. It was chosen as a building block
of automated geological processing that will eventually be
used for both navigation and data processing. Because
the COTS hardware is not radiation hardened, SEU-
induced soft errors will occur. These errors are simulated
in the demonstration by use of a software-implemented
fault-injector, and are injected at a rate much higher than
is realistic for the sake of viewer interest. Both the
application and the middleware contain mechanisms for
both detection of and recovery from these faults, and these
mechanisms are tested by this very high fault-rate. The
consequence of the REE system being able to tolerate this
fault rate while continuing to process data is that the
system will easily be able to handle the true fault rate.

1. Introduction

The goal of the Remote Exploration and
Experimentation (REE) Project [1] is to move
supercomputing into space in a cost effective manner and
to allow the use of inexpensive, state of the art,

commercial-off-the-shelf (COTS) components and
subsystems in these space-based supercomputers. The
motivation for the project is the lack of bandwidth and
long round trip communication delays which severely
constrain current space science missions. Unlike typical
radiation-hardened space-based systems, the use of COTS
hardware will require the REE system to withstand
relatively high rates of single event upset (SEU) induced
errors. Depending on mission environments and
component technologies, an REE system will be required
to withstand average fault rates of between 1 and 100
SEU-induced soft errors per CPU-MB-day with
occasional peaks of up to 1000 soft errors per CPU-MB-
day[2]. Unlike traditional fault tolerant computer systems,
however, the REE computer need not provide 100%
reliability, but is instead, as with many sampled data or
convergent-computation systems, allowed to occasionally
fail in a computation. Periodic resets to flush latent errors,
and other techniques which provide less than 100%
availability, are also permissible. Further, the REE
computer need not support hard real time or mission
critical computation, as these tasks can be off-loaded to
the spacecraft control computer.

The flexibility afforded by the above requirements
allows the system to be optimized for high-performance,
low-power, supercomputing rather than for “hard” fault
tolerance. Thus, REE seeks to maximize simplex
operation and minimize resource replication, redundant
executions and other high-overhead strategies. (We should
note that software-implemented triple-modular
redundancy (TMR) and other high-overhead techniques

0-7695-0707-7/00 $10.00 � 2000 IEEE

will be developed and integrated into a suite of
operational options for flexible fault tolerance, but it is
expected that these will not be the primary operating
modes of the system. It is, however, expected that a small
subset of nodes may be called upon, from time to time, to
operate in a highly reliable and real time manner.)

Another project goal is to allow scientists to develop
science applications in their laboratories and to easily port
the resulting software to the REE computer with minimal
or no re-engineering for fault tolerance or for the
spacecraft computing environment. In addition to COTS
hardware, the project thus seeks to utilize a commercial
operating system and to support standard commercial
application development tools (compilers, debuggers, etc.)
and methods to the maximum extent practical.

The REE computer architecture is a Beowulf-type1 [3]
parallel processing supercomputer comprising a
multiplicity of processing nodes interconnected by a high
speed, multiply redundant communication fabric. In the
current instantiation of the system, dual Power PC 750
based computational nodes containing 128MB of main
memory and dual redundant Myrinet [4] interfaces are
interconnected via a redundant Myrinet fabric. The node
level operating system is Lynx [5] Operating System
(OS), to which multiple versions of MPI [6] have been
ported. The current system may contain up to 20 nodes
(40 processors) and is extensible to at least 50 nodes with
a power:performance of better than 30MOPS/Watt. The
applications are written so that they may be automatically
configured to execute on up to 50 processors with the
system being informed, by the application, of the optimal
number of processors for maximum throughput and the
system assigning the number of processors available
based on system status and operational constraints such as
available power, spares availability and mission phase.

There are currently 5 science teams writing
applications for potential future NASA missions which
may incorporate the REE computer. To aid application
developers, a library of fault-detection-enabled scientific
subroutines for linear algebra and Fast-Fourier Transform
(FFT) routines has been developed. Work is ongoing to
determine the utility of an error-correction-enabled
library. In addition, continued analysis of application fault
tolerance requirements and determination of the
applications’ native error tolerance is ongoing, as is the
development of a generalized taxonomy of scientific
software structure and the applicability (and overhead
costs) of various software-implemented fault-tolerance
(SIFT) mechanisms to these constructs.

1 Beowulf-class computers were originally defined as parallel clusters of

commodity hardware and open-source operating systems and tools.
This definition has grown to include most clusters composed of
personal computer central processing units (CPUs) and commodity
operating systems and tools.

While we are currently in the process of expanding and
documenting guidelines for application software
developers, and while some of the SIFT strategy is the
responsibility of the applications themselves, three system
software layers have thus far been defined to aid in
achieving the required fault tolerance:

A middleware layer which, conceptually, resides
between the OS and the application,
a reliable communications layer which ensures that
all system level communications are either error free
or error-noted and which, conceptually, is viewed as a
series of driver level enhancements to the node OS,
and
A global coordination system which manages the
overall system.

The combination of node operating system, reliable
communications software, middleware, and global
coordination layers are simply referred to as the REE
System Software. Some of the responsibilities of the REE
system software include:

1 . Managing system resources (maintaining state
information about each node and about the global
system, performing system resource diagnostics,
etc.).

2 . Job scheduling (globally scheduling jobs across the
system, local job scheduling within the node,
allocation of resources to jobs, etc.).

3 . Managing the scientific applications (launching the
applications, monitoring the applications for failure,
initiating recovery for applications, etc.)

The key components of the REE systems software are
shown in Figure 1.

The immediate concern of the Applications Manager is
to oversee the execution of the scientific applications. As
the applications represent the ultimate “customer” of the
REE environment, efficiently supporting their required
dependability level is paramount. The Applications
Manager monitors the science application for externally
visible signs of faulty behavior as well as for messages
generated internally by the applications requesting fault
tolerance services.

Fault tolerance concerns for the REE System Software
must also be addressed since these components ultimately
ensure the correct operation of the REE environment.
Several of its operations, such as scheduling and resource
allocation are considered to be critical and therefore must
be protected at all costs. We currently envision that these
operations will therefore be run under the software-
implemented TMR system previously discussed. Another
module which must be protected is the Applications
Manager. This software module, which is resident on
each node engaged in applications processing, must be

0-7695-0707-7/00 $10.00 � 2000 IEEE

self-checking to ensure correct operation of this
“middleware” layer.

This demonstration will show one of REE’s scientific
applications executing under the Applications Manager.
Faults will be injected into the nodes executing the
application by a software implemented fault injector, and
the cooperative interactions between the application, the
Applications Manager and the COTS node operating
system to protect the integrity of the computation will be
shown.

2. Application Manager

The scientific applications executing on an REE
platform are programmed using MPI [6], a standardized
messaging interface used to implement parallel
applications. These are typically computationally
intensive programs that perform such actions as on-board
image filtering and signal processing.

Core routines within each application, such as matrix
multiplication, employ algorithm-based fault tolerance
(ABFT) to help protect against data faults. Internal ABFT
techniques, however, do not mitigate the need for an
external entity controlling the applications. Capabilities
such as launching application processes, terminating
rogue application processes, detecting failures in
application processes, and migrating failed processes to
functioning nodes are some responsibilities that must be
relegated to an external controlling entity. The
Application Manager fulfills this role. REE currently uses
the Chameleon application manager written by Prof. Ravi
Iyer et. al at the University of Illinois [7] [8].

The Application Manager provides its fault tolerance
services to the scientific MPI applications through ARMOR

processes (Adaptive Reliable Mobile Objects of
Reliability). ARMORs are built from a library of reusable
components that implement specific services and
techniques for providing fault tolerance. An overriding

JOB/node Strategy Scheduler

Multi-node Scheduler

Single-Node Scheduler

Applications
Manager

Resource
Manager

In
iti

at
e/

m
od

ify
/

te
rm

in
at

e
ap

p

R
es

ou
rc

e
co

m
m

an
ds

R
es

ou
rc

e
st

at
us

Bootstrap OS

Load Scheduler

Load applications

Node
commands

Node
status

REE Manager

Node
OS

F
au

lt/
ot

he
r

st
at

us

Figure 1. REE system software block diagram

MPI process MPI process

ARMOR ARMOR

MPI_ calls

Heartbeat /
Status

High-Level
Manager

Node 1

Node 2 Node 3

Start / Kill
Application

Status

Responsibilities include:
- Coordinate application recovery
- Recover from node failures
- Interact with REE system software

Responsibilities include:
- Spawn application processes
- Detect process failures
- Detect process hangs through
 application heartbeats

Figure 2. MPI application manager

0-7695-0707-7/00 $10.00 � 2000 IEEE

goal of the A R M O R concept is to have a uniform
architecture through which customized levels of fault
tolerance can be achieved. For REE, the ARMORs have
been customized to provide oversight to MPI applications.

Because the target MPI applications often consist of
several processes and because these applications cannot
sacrifice performance, replication is not viewed as an
acceptable approach for ensuring fault tolerance in an
environment with constrained processing resources.
Effective reporting and detection of errors is considered
most important, as the target MPI applications can tolerate
occasional restarts and rollbacks to previous checkpoints.

A challenge to the applications manager is to provide
these error detection and recovery services to the target
applications as transparently as possible. For the most
part, the Applications Manager treats the MPI application
as a black box entity. Each MPI process is directly

overseen by an ARMOR executing on the same node, as
shown in Figure 2. Failures in the application are detected
by the ARMOR and communicated to a high-level ARMOR

that coordinates recovery.
For tolerating non-crash failures, the overseeing

A R M O R exposes a non-intrusive API (application
programming interface) to the MPI application. Non-
intrusive mean that the MPI application only need be
lightly instrumented with API calls; no fundamental
redesign of the application is necessary. Through this
interface, the application can communicate vital
information to the overseer ARMOR process so that the
Application Manager can better gauge the health of the
application. Examples include the reporting of
correctable and uncorrectable ABFT errors directly
detected by the application, as well as periodic updates to
the ARMOR concerning the application’s progress. Also

Vectors for each pixel near each other
in feature space are grouped together

into the same cluster.

Frequency and orientation tuned
filters convolved with im age to
produce Feature Vectors

Extract features Cluster

Feature 1

Fe
at

ur
e

3

Feature 2
Clustered

Image

Feature
Vectors

FFT IFFTx

FFT IFFTx

Original
Image

Filter 2

Filter 1

Filter 3

FFT IFFTx

Figure 3. Rover texture analysis application

Original
Image

Orientation

Sc
al

e
(f

re
qu

en
cy

)

Cross section of filter

Top vi ew of fi lter

Figure 4. Image response to several filters

0-7695-0707-7/00 $10.00 � 2000 IEEE

currently being investigated is applying some of the error
detection techniques found within ARMOR processes to the
MPI applications as well [7]. (These include such things
as control flow signature checking on the process’s
execution.) The ultimate goal of these techniques is to
improve a process’s self-checking capabilities, and the
MPI applications outfitted with these techniques would
work in tandem with the overseeing ARMOR to accomplish
this goal.

Recovery of an MPI application is complicated by the
fact that current MPI implementations do not allow single
MPI processes to be restarted; instead, all processes must
be launched again to restart the application. For this
reason, there exists a single high-level ARMOR named the
Fault Tolerance Manager (FTM) that coordinates the
actions among all other ARMORs (the ARMORs that directly
oversee each MPI process). The FTM is also responsible
for handling node failures that affect one or more MPI
applications. Whenever the FTM detects a node failure
through its heart-beating mechanism, it must migrate all
affected processes to another node. Selecting a spare
node is done with the assistance of Resource Manager, an
REE System Software component that is external to the
Applications Manager. Again, the MPI applications
themselves are oblivious to the exact recovery actions
taken by the FTM and other ARMORs.

3. REE Application Demonstration

We will demonstrate one of the REE Science
Applications, the Texture Analysis application developed
by the Rover Science Team [9]. This parallel (MPI)
application segments images according to texture
information. This is one of the methods that a Mars
Rover would use to determine rock types. The application
can process any number of images. The processing steps
for each image are shown in Figure 3. First, a number of
filters are applied to the image. Each filter is a
combination of a frequency and an orientation, as shown
in Figure 4. The results of each filter are a feature vector.
The feature vector measures the response of each pixel in
the original image to the filter. After completing the
filtering, clusters are segmented in the feature vector
space. Then, each pixel is painted to show the cluster to
which it belongs, as seen in Figure 5.

In order to test this application, two levels of fault-
protection have been applied. The first level is
Chameleon, used as the application manager. Once the
application starts successfully, Chameleon ensures that it
continues running until it has completed. The application
has been slightly modified to make heartbeat calls to the
Chameleon ARMORs, and Chameleon is aware of how
often these heartbeats should occur. If one fails to occur
within the response window, Chameleon assumes that the
application has hung, or is stuck in a loop, and restarts it.
The application also writes out its status to a log file. It
can then read this file when it is started or restarted to
know what images and filters have already been
processed, so that it can start on the first image or filter
that has not yet been completed. This “checkpointing”
could be done at a finer level such as each FFT, but this
current level is sufficient for testing and demonstration.

The second level of fault-protection is inside the
application, though the application code itself is not
modified. Instead, an ABFT [10] version of the FFT
library is used. The ABFT versions of the FFT routines
have the same calling sequences as the basic routines, but
they check to see if the FFT was completed successfully
before returning. If the FFT was not successful, they retry
once. If this retry is also unsuccessful, the ABFT version
of the FFT calls exit, which essentially promotes the
problem to Chameleon to deal with by restarting the
application on the current rock or filter. A flowchart of
the ABFT operation is shown in Figure 6.

The demonstration to be shown will use the application
running on an embedded system at the Jet Propulsion
Laboratory (JPL). Through a series of scripts, output files
will be transferred to the demonstration machine and
displayed. An application-based fault injector named
SWIFI (developed at JPL) will be used to insert random
SEUs into memory and registers at 10 to 100 times the
expected fault rate on the Martian Surface [2], which will
exercise the two existing levels of fault protection. The
demonstration machine will compare the application
outputs from the code running with random fault injection
to outputs previously generated from an unfaulted
application. This will show the effects and overhead of
the fault-protection layers.

Figure 5. Example of texture segmentation input and output

0-7695-0707-7/00 $10.00 � 2000 IEEE

4. Conclusions

The REE project requires that dependability be
provided through software. Extensive error detection and
recovery services are provided to the target applications
through a variety of mechanisms including checkpointing,
TMR, and ABFT-enabled scientific subroutine libraries.
The applications are built and tested without fault-
tolerance features, and then modified to use substantially
off-the-shelf fault-tolerance components. The initial
application manager being used by REE is built from a
series of ARMORs, and is controlled by the prototype REE
system software. Through the application manager and
system software, the application is able to tolerate process
failures, process hangs, and node failures. The ABFT-
enabled libraries are essentially transparent to the
application and provide high fault coverage of the
mathematical routines themselves, though not of logical
or arithmetic codes outside the library routines. Additional
fault detection strategies will be required to protect the
remainder of the application codes, the node operating
system and system software.

It is possible that, in addition to having A R M O R

technology protect the application manager, comparable
error detection and recovery techniques can be extended
to the REE system software as well. Because the REE
system software does not have the strict requirement of
being completely off-the-shelf, additional customizations
can be made to the REE processes that allow them to take
advantage of ARMOR technology. Specifically, the
underlying ARMOR architecture can be embedded into the
REE processes, allowing REE system software to take
advantage of the reconfigurable error detection and
recovery services currently found in standalone ARMORs.
It is the intent of the REE project that the integration of
the REE system software into the overall SIFT layer will
result in a unified approach toward providing
dependability to all facets of the REE software, including
the target scientific applications.

Over the next 18 months, the REE project will
continue the development of SIFT approaches for space-
based parallel COTS supercomputing. The Project will
culminate in the development of a final flight-capable
prototype hardware/software system during the 2003-2004
time frame.

5. Acknowledgements

The work described in this publication was carried out
at the Jet Propulsion Laboratory (JPL), California Institute
of Technology under a contract with the National
Aeronautics and Space Administration (NASA).

6. References

[1] R. Ferraro, “NASA Remote Exploration and Experimentation
Project,” http://www-ree.jpl.nasa.gov/

[2] R. Ferraro, R. R. Some, J. Beahan, A. Johnston, and D S.
Katz, “Detailed Radiation Fault Modeling of the REE First
Generation Testbed Architecture,” to appear in Proceedings of
2000 IEEE Aerospace Conference.

[3] T. Sterling, J. Salmon, D. Becker, D. Savarese, How to Build
a Beowulf, The MIT Press, 1999.

[4] Myrinet is a class of products of Myricom, Inc.
(http://www.myricom.com/).

[5] Lynx OS is a product of Lynx Real Time Systems, Inc.
(http://www.lynx.com/)

[6] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, J.
Dongarra, MPI: The Complete Reference, The MIT Press, 1996.

[7] S. Bagchi, B. Srinivasan, K. Whisnant, Z. Kalbarczyk, R.
Iyer, “Hierarchical Error Detection in a Software Implemented
Fault Tolerance (SIFT) Environment,” to appear in IEEE
Transactions on Knowledge and Data Engineering, March 2000.

[8] Z. Kalbarczyk, S. Bagchi, K. Whisnant, R. Iyer, “Chameleon:
A Software Infrastructure for Adaptive Fault Tolerance,” IEEE
Transactions on Parallel and Distributed Computing, June
1999.

[9] R. Castaño, T. Mann and E. Mjolsness, “Texture Analysis for
Mars Rover Images,” Applications of Digital Image Processing
XXII, Proc. of SPIE, Vol. 3808, Denver, July, 1999.

[10] M. Turmon, R. Granat, “Algorithm-Based Fault
Tolerance for Spaceborne Computing: Basis and
Implementations,” to appear in Proceedings of 2000 IEEE
Aerospace Conference.

numerical
operation

checksum

compare:
< τ ?

checksum

input(s)

c1

result(s)

c2

throw error
or retry

ok

Figure 6. ABFT flowchart

0-7695-0707-7/00 $10.00 � 2000 IEEE

