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Abstract

In this paper, we extend the theory and practice re-
garding algorithmic fault-tolerant matrix-matrix multipli-
cation, C = AB, in a number of ways. First, we pro-
pose low-overhead methods for detecting errors introduced
not only inC but also inA and/orB. Second, we show
that, theoretically, these methods will detect all errors as
long as only one entry is corrupted. Third, we propose a
low-overhead roll-back approach to correct errors once de-
tected. Finally, we give a high-performance implementa-
tion of matrix-matrix multiplication that incorporates these
error detection and correction methods. Empirical results
demonstrate that these methods work well in practice while
imposing an acceptable level of overhead relative to high-
performance implementations without fault-tolerance.

1 Introduction

The high-performance implementation of many linear
algebra operations depends on the ability to cast most
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of the computation in terms of matrix-matrix multiplica-
tion [2, 3, 6, 12]. High-performance for matrix-matrix mul-
tiplication itself results from the fact that the cost of mov-
ing b � b blocks of the operands between the layers of the
memory hierarchy is proportional tob2, while this cost can
be amortized overO(b3) computations. These observations
impact algorithmic fault-tolerance for linear algebra rou-
tines that spend most of their time in matrix-matrix mul-
tiplication in the following sense:

� If the matrix-matrix multiplication kernel used is fault-
tolerant, the entire operation is largely fault-tolerant.

� Ensuring the integrity of ab� b block of a matrix can
be expected to costO(b2) time. This expense can be
amortized over theO(b3) operations performed with
that data.

Thus, not only is the availability of a fault-tolerant matrix-
matrix multiplication an important first step towards cre-
ating fault-tolerant linear algebra libraries, but there is an
inherent opportunity for adding fault-tolerance to matrix-
matrix multiplication while retaining high-performance.

The primary goal for our mechanism is to detect a maxi-
mal fraction of errors while introducing minimal overhead.
As argued in the previous paragraph, for the matrix product,
with a cubic cost in floating–point arithmetic operations, we
can expect to pay at least a quadratic cost. Thus, the goal
is to find a mechanism with a quadratic cost. We follow, in



that sense, the technique described in [13, 14]. In those pa-
pers, the correctness ofC = AB is established by checking
d = Cw � ABw for a checksum vectorw. The matrix-
matrix multiplication is assumed to have been successful if
d is of the order of the errors that could be introduced due
to the use of finite precision arithmetic (round-off errors).
This is a simple application of Result-Checking [15]. In
this paper, we generalize this method toC  �AB + �C,
the form of matrix-matrix multiplication that is part of the
level 3 Basic Linear Algebra Subprograms (BLAS) [5], and
sharpen the theory behind the method. In particular, we
show that toguaranteedetection of a single error intro-
duced in one of the matricesA, B, or C, one must check
bothd = Cw � ABw ande = vTC � vTAB for check-
sum vectorsv andw. Finally, we show how to incorpo-
rate the techniques in a high-performance implementation
of matrix-matrix multiplication.

The methods we present are closely related to those de-
scribed in [11]. That paper proposes to augment matrices
A,B, andC as

A? =

�
A
vTA

�
; B? =

�
B Bw

�
; and

C? =

�
C Cw
vTC vTCw

�
:

(Here, bothvT andw are checksum vectors.) By noting that
in the absence of errors

C? =

�
C Cw
vTC vTCw

�
=

�
A
vTA

��
B Bw

�

=

�
AB ABw
vTAB vTABw

�
= A?B?;

they show how a comparison ofvTC with vTAB andCw
with ABw can detect and correct errors introduced in ma-
trix C.

On the surface, when comparing our methods to [11], it
may appear that, from an implementation point of view, we
simply perform the matrix multiplies separately rather than
as part of augmented matrices. (This shows the simple con-
nection between Result-Checking and the approach in [11].)
However, our approach differs in a number of ways. First,
we go well beyond the approach in [11] by also developing
a sound theory behind the detection of errors introduced in
A andB. Second, by adopting the techniques developed
in [14] we explicitly deal with the question of how to differ-
entiate errors due to corruption from errors due to round-off.
Third, we take a very different approach to the correction of
detected errors by using a roll-back method. Finally, by
adding fault-tolerance to ahigh-performanceimplementa-
tion of matrix-matrix multiplication we verify that the theo-
retical results can be implemented without sacrificing high
performance.

The rest of the paper is structured as follows. In Sec-
tion 2 we briefly describe the intended domain of applica-
tion for our methods. In Section 3 we expound upon our the-
ory concerning the effects of the introduction of one error
in one of the matrices during a matrix-matrix multiplication.
In Section 4 we describe how to take the results from Sec-
tion 3 from theory to practice (although still at a high level
of abstraction). A working fault-tolerant implementation
of the matrix product based on a high-performance matrix-
matrix multiplication implementation (ITXGEMM [8, 9]) is
subsequently given in Section 5. The experimental results
in Section 6 reveal the low overhead introduced in the ma-
trix product by our fault–detection mechanism. We briefly
discuss the current status of the project in Section 7 and
concluding remarks are given in Section 8.

2 Target Application

Within NASA’s High Performance Computing and Com-
munications Program, the Remote Exploration and Exper-
imentation (REE) project [1] at the Jet Propulsion Labora-
tory aims to enable a new type of scientific investigation by
taking commercial supercomputing technology into space.
Transferring such computational power to space will enable
highly-autonomous, flexible missions with substantial on-
board analysis capability, mitigating control latency issues
due to fundamental light-time delays, as well as inevitable
bandwidth limitations in the link between spacecraft and
ground stations. To do this, REE does not intend to de-
velop a new computational platform, but rather to define
and demonstrate a process for rapidly transferring commer-
cial high-performance computing technology into ultra-low
power, fault-tolerant architectures for space.

The traditional method for protecting spacecraft compo-
nents against faults caused by natural galactic cosmic rays
and energetic protons has been radiation-hardening. How-
ever, radiation-hardening lowers the clock speed and may
increase the required power of a component. Even worse,
the time needed to design and bring a radiation-hardened
component into production guarantees that it will be out-
dated when it is ready for use in space. Furthermore, the
design and production expenses must be spread over a small
number of customers, making the per unit cost very high.
Typically, at any given time, radiation-hardened compo-
nents have a power:performance ratio that is an order of
magnitude lower, and a cost that is several orders of mag-
nitude higher than contemporary commodity off-the-shelf
(COTS) components. The REE project is therefore attempt-
ing to use COTS components in space and handling, via
software, the faults that will occur.

Most of the transient faults encountered due to radiation
in space will be single event effects (SEEs); their presence
requires that the applications be self-checking, or tolerant of



errors, as the first layer of fault-tolerance. Additional soft-
ware layers will protect against errors that are not caught
by the application [4]. For example, one such layer would
automatically restart programs which have crashed or hung.
This works in conjunction with self-checking routines: if
an error is detected, and the computation does not yield cor-
rect results after a set number of retries, the error handling
scheme aborts the program so that it can be automatically
restarted.

In an REE system, there will be many places in which
SEEs can cause errors. Layers of memory which are off-
processor (main memory, L2 and L3 caches) can be made
error detecting and correcting, so that faults to these lay-
ers of memory will largely be screened. Most faults will
therefore impact the microprocessor and its registers or its
L1 cache. SEEs affecting data are particularly troublesome
because they typically have fewer obvious consequences
than an SEE that impacts code (e.g. in the L1 instruction
cache) — the latter would be expected to cause an excep-
tion. For this reason, this paper focuses on data corruption,
specifically in those components which are on-processor
(L1 cache, registers) which cannot be protected through
hardware, because while the REE Project can modify the
off-processor memory system at relatively low cost, it can-
not modify the processor.

A single error correction, double error detection
(SECDED) Hamming code will be used to protect off-
processor data. This can be applied to cache lines of data
when they are written or checked when they are read. In
L2 and L3 cache, if the fault rate is sufficiently high, it is
possible to scrub data by using a background process on the
processor to invalidate lines of data that have not been used
in some period of time, though the REE Project does not
believe this will be necessary. In main memory, scrubbing
will be required. This can either be implemented as a back-
ground process (similar to that used for L2 and L3 cache), or
in hardware, as an Field Programmable Gate Array (FPGA)
or Application Specific Integrated Circuit (ASIC) that is on
the memory bus. The rate of scrubbing can be tied to the the
error detection rate in order to keep the error rate roughly
constant, for power efficiency.

Due to the nature of most scientific codes, including
the data processing applications currently being studied by
REE, much of their time is spent in certain common nu-
merical subroutines — as much as 70% in one NGST (Next
Generation Space Telescope, the planned successor to the
Hubble Space Telescope) application, for example. Protect-
ing these subroutines from faults provides one level of pro-
tection in an overall software-implemented fault-tolerance
scheme.

3 Detecting Errors

In this section we develop a theoretical foundation for
error detection in the operationC = AB whereC, A, and
B arem� n,m� k, andk� n, respectively. Here, we use
partitionings ofA andB by columns and rows, respectively:

A =
�
a1 � � � ak

�
and B =

0
B@

b̂T1
...
b̂Tk

1
CA :

We also use two (possibly different) checksum vectors:

w =

0
B@

!1

...
!n

1
CA and vT =

�
�1 � � � �m

�
:

For simplicity, we first assume that exact arithmetic is
employed and then we discuss the tolerance threshold for
the case where round-off errors are present.

3.1 Exact arithmetic

Consider the operationC = AB and let ~C be the matrix
computed when at most one element of any one of the three
matrices is corrupted during the computation. (We primar-
ily consider a single corruption since most errors will be
SEEs.) In other words, view the operation as atomic and
assume that before the computation one element ofA orB
is corrupted or afterC = AB has been formed one element
of C is corrupted. We can think of the error as a matrix of
the form�eie

T
j added to one of the three matrices; here� is

the magnitude of the error andek denotes thek–th column
of the identity matrix. The possible computed results are
then given in Table 1 in the row labeled “~C”. Naturally, we
wish to detect the instances in whichF = ~C�C is nonzero
(or, in the presence of round-off error, “significant”). Thus,
we must compute or approximate the magnitude ofF , e.g.,
askFk1, but we must do so without being able to formF .
Moreover, relative to the cost of computingC, the compu-
tation of the estimation ofkFk1 must be cheap.

Right-sided error detection criterion

Consider now the computation ofd = ~Cw � Cw, where
w is a vector with entries!i = 1, i = 1; : : : ; n. From
Table 1 we see thatif the corruption is in matrixB or C,
kdk1 = kFk1. As we do not haveC, but a possibly cor-
rupted approximation,~C, we useA(Bw) instead ofCw in
the computation ofd; only three matrix-vector multiplica-
tions are then required to computed. These matrix-vector
multiplications are cheap relative to a matrix-matrix multi-
plication. Computingd and its norm is exactly the proce-
dure suggested in [14].



Matrix Corrupted
~A = A+ �eie

T
j

~B = B + �eie
T
j

~C = C + �eie
T
j

~C ~AB A ~B AB + �eie
T
j

F = ~C � C �eib̂
T
j �aie

T
j �eie

T
j

kFk1 j�jkb̂Tj k1 j�jkaik1 j�j

d = Fw �eib̂
T
j w �!jai �!jei

kdk1 j�jjb̂Tj wj j�jj!j jkaik1 j�jj!j j

eT = vTF ��ib̂
T
j �vT aie

T
j ��ie

T
j

keTk1 j�jj�ijkb̂
T
j k1 j�jjvT aij j�jj�ij

criterion keTk1(= j�ijkFk1) kdk1(= j!j jkFk1) kdk1(= j!j jkFk1)
or

keTk1(= j�ijkFk1)

Table 1. Some measurements and error detection criteria.

However, if the corruption occurs inA, kdk1 =

j�jjb̂Tj wj, which can be small even ifkFk1 is large. In
particular, if the elements of thej–th row ofB sum to zero,
kdk1 = 0 regardless of the the magnitudekFk1. While
this is not likely to happen in practice, the method is clearly
not bulletproof for detecting corruption inA. A simple ex-
ample of a matrix encountered in practice which has rows
and/or columns with entries that sum to zero is the matrix
derived from a discretization of Poisson’s equation using a
five-point stencil.

We will refer to the error detection criterion which places
checksum vectorw on the right as aright-sidederror detec-
tion criterion. This criterion is guaranteed to detect a single
error introduced inB orC. It is highly likely to detect such
an error introduced inA.

Left-sided error detection criterion

Next, consider the computatione = vT ~C � vTC wherev
is a vector with entries�i = 1, i = 1; : : : ;m. From Table 1
we see thatif the corruption is in matrixA orC, keTk1 =
kFk1. Again, by computingvTC = (vTA)B we can ob-
tain e with only three matrix-vector multiplications. In this
case, if the corruption was inB, keTk1 = j�jjvT aij, which
can be small even ifkFk1 is large. In particular, if the el-
ements of thei–th column ofA sum to zero,kek1 = 0.
Thus, the method is clearly not completely foolproof for
detecting corruption ofB.

We will refer to the error detection criterion which places
checksum vectorv on the left as aleft-sidederror detection
criterion. This criterion is guaranteed to detect a single error
introduced inA or C. It is highly likely to detect such an
error introduced inB.

Two-sided error detection criterion

Clearly, in order to guarantee the detection of the corruption
of a single element in one of the three matrices, one must
computekdk1 if the error is in eitherB orC, andkek1 if
the error is in eitherA orC.

3.2 Tolerance threshold and round-off errors

Unfortunately, computers are not equipped to deal with
infinite precision arithmetic and rounding errors due to fi-
nite precision arithmetic will occur. In our error detection
setting this means that, even if no error is introduced in any
of the matrices, it may well be the case thatk ~C � Ck 6= 0.

Round-off error analysis of matrix operations has been a
classic area of numerical analysis for the last half-century.
A result found in standard textbooks (e.g., [7]) is that for
an implementation of the matrix productC = AB, based
on gaxpy, dot product, or outer productcomputations, the
computed results, fl(AB), satisfies

kfl(AB)�ABk1

� max(m;n; k) u kAk1kBk1 +O(u2);

whereu is the unit round-off of the machine (the difference
between 1 and the next larger floating point number repre-
sentable in that machine).

Therefore, our error detection mechanism should declare
that an error has occurred when

kdk1 > � kAk1kBk1 or keT k1 > � kAk1kBk1;

where� = max(m;n; k) u.
These results on thresholds for detecting errors merely

reiterate the observations made in [14].



3.3 Specialization to our situation

As mentioned in Section 2, our primary concern involves
a corruption affecting data which reside in the L1 cache.
Thus this corruption does not necessarily persist during the
entire matrix-matrix multiplication. Therefore, it may be
more informative to view matricesC, A, andB partitioned
as follows:

C =

0
B@

C11 � � � C1N

...
. . .

...
CM1 � � � CMN

1
CA ;

A =

0
B@

A11 � � � A1K

...
. ..

...
AM1 � � � AMK

1
CA ; and

B =

0
B@

B11 � � � B1N

...
. . .

...
BK1 � � � BKN

1
CA ;

whereCij ismi � nj ,Aip ismi � kp, andBpj is kp � nj .

Now Cij is computed as a sequence of smaller updates
Cij  AipBpj + Cij and the corruption will be encoun-
tered in exactly one such update. In other words, for one
tuple of indices(i; j; p) one of the operands is corrupted
by changing one element. Let us assume thatBpj is cor-
rupted by�ereTs . Then the computed matrix~C is equal to
C except in the(i; j) block, which equalsCij + �a

(i;p)
r eTs ,

wherea(i;p)r denotes ther–th column ofAip. If w again

equals the vector of all ones,k ~C � Ck1 = j�jka
(i;p)
r k1

andk ~Cw�Cwk1 = j�jka
(i;p)
r k1. It follows that the right-

sided detection criterion for detecting errors inB orC still
works. The theory behind the left-sided and two-sided de-
tection criteria can be extended similarly.

4 Towards a Practical Implementation

In this section we deal with two issues concern-
ing the practical implementation of a fault-tolerant high-
performance matrix-matrix multiplication kernel. First, in
addition to error detection, we must also be able to cor-
rect any errors that are exposed. Second, in order to main-
tain high-performance, we must let the theory guide us to a
scheme that imposes as little overhead as is possible.

ConsiderC = �AB + �C whereC, A, andB have
dimensionsm�n,m�k andk�n, respectively. The cost of
this operation is2mnk floating point operations (FLOPs).

4.1 Right-sided error detection method

A simple approach is to computeD = AB, and check
the computed~D by determining whether

k ~Dw �A(Bw)k1 < � kAk1kBk1:

If the condition is met, thenC  �D + �C is performed;
otherwiseD is recomputed. (Note: our assumption is that a
copyof A orB is corrupted in some level of cache memory.
Thus, the recomputation can use the original data inA and
B.) If a more stringent threshold is used, a false error due to
round-off can occur. In this case one can determine whether
or notk ~Dw�A(Bw)k1 is exactly equal twice in a row. It
it is, C is updated since this would indicate that the scheme
resulted in a false detection due to round-off error.

The overhead from error detection is2mn FLOPs for
forming ~Dw and2kn + 2mk FLOPs for formingA(Bw)
for a total of2mn + 2kn + 2mk FLOPs. In addition, the
computations ofkAk1 andkBk1 costO(mk) andO(kn),
respectively. If even a single error is detected, the cost of the
operation doubles. Also, storage forD, mn floating point
numbers, is required.

4.2 Left-sided error detection method

A simple approach is to again computeD = AB, and
check the computed~D by testing ifkvT ~D� (vTA)Bk1 <
� kAk1kBk1. If the condition is met, thenC  �D +
�C; otherwiseD is recomputed. IfkvT ~D � (vTA)Bk1
is exactly equal twice in a row,C is updated since it is as-
sumed that a corruption was erroneously detected.

A more sophisticated approach partitionsB, C, andD
as

B =
�
B1 � � � BN

�
; (1)

C =
�
C1 � � � CN

�
; and (2)

D =
�
D1 � � � DN

�
; (3)

and computesDj = ABj . After each such computation,
the magnitude ofkvT ~Di � yTBik1 is checked, where
yT = vTA can be computed once and reused. As before,
if no error is detected,Ci  � ~Di + �Ci; otherwiseDi is
recomputed. Now only workspace for oneDi is required
and fewer computations need to be repeated when an error
is detected. Note that this is not possible for the right-sided
approach since for eachBiw the productA(Biw) must be
computed, which is expensive whenBi has few columns,
as it is in our implementation (described in the experimen-
tal section).

Given a column partitioning of matricesDj andBj of
width b, the overhead from error detection is now2mk
FLOPs for formingyT = vTA, 2mb FLOPs for form-
ing vT ~Dj and2kb FLOPs for formingvTBj . Taking into



account thatn=b panels ofD must be computed, the to-
tal overhead becomes2mn + 2kn + 2mk FLOPs, equiv-
alent to the cost of the right-sided error detection scheme
above. In addition, the computations ofkAk1 andkBjk1,
j = 1; : : : ; N , costO(mk) andO(kn), respectively. If a
single error is detected during the update ofC, only 2mbk
FLOPs are repeated. In this case, only storage for one panel
Dj , mb floating point numbers, is required.

4.3 Two-sided error detection

Naturally the two above-mentioned techniques can be
combined to yield a two-sided error detection method. Here
all of D is computed using a left-sided error detection
method, after which a right-sided error detection method
is used to verify that no undetected errors slipped by. If no
errors are detected,C is appropriately updated.

The computational cost of two-sided error detection is
exactly twice that of the one-sided error detection methods.
Storage for all ofD, or mn floating point numbers, is re-
quired. However, the left-sided error detection scheme will
almost always detect errors and thus the overhead for cor-
recting a single error is only2mbk FLOPs.

4.4 Reducing overhead

Even in the case where no error is detected, the above
schemes, particularly the right- and two-sided approaches,
carry a considerable overhead in required workspace. In
addition, if an error is detected with these methods, the cost
of recomputation can double the overall cost of the matrix-
matrix multiplication. In this section we discuss how both
of these overheads can be overcome.

Specifically, partitionC, A, andB as

C =

0
B@

C11 � � � C1N

...
. . .

...
CM1 � � � CMN

1
CA ; (4)

A =

0
B@

A11 � � � A1K

...
. . .

...
AM1 � � � AMK

1
CA ; and (5)

B =

0
B@

B11 � � � B1N

...
. . .

...
BK1 � � � BKN

1
CA (6)

whereCij ismi � nj ,Aip ismi � kp, andBpj is kp � nj .
(While this partitioning looks remarkably like the one in
Section 3.3, the discussion in that section has no bearing on
the discussion below.) ThenC can be computed by a scal-
ingC  �C followed by updatesCij  �AipBpj + Cij ,
for i = 1; : : : ;M , j = 1; : : : ; N , p = 1; : : : ;K. Each of

these individual updates can use the error detection schemes
described above. Using this method workspace can be
greatly reduced as can the cost of a recomputation. More-
over, there are a number of opportunities for the reuse of
resultsBpjw, vTAip, kBpjk1, andkAipk1, wherew and
v have lengthnj andmi, respectively.

Notice that the proposed error detection and correction
scheme can now handle multiple errors with respect to the
overall matrix-matrix multiplication, as long as only one er-
ror occurs during the computationAipBpj .

5 An Actual Implementation

In this section we briefly outline our implementation of
the ideas presented above.

We start by describing a high-performance implementa-
tion of matrix-matrix multiplication, ITXGEMM [8], devel-
oped at UT-Austin in collaboration with Dr. Greg M. Henry
of the Intel Corporation. To understand how ITXGEMM
uses hierarchical memory to attain high performance recall
that the memory hierarchy of a modern microprocessor is
often viewed as a pyramid (see Fig. 1). At the top of the
pyramid there are the processor registers, with extremely
fast access. At the bottom, there is disk and even slower me-
dia. As one goes down the pyramid, the amount of memory
increases along with the time required to access that mem-
ory.

fast

slow
?

6

expensive

cheap
?

6

�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
A
A
AAregisters

L1 cache

L2 cache

...

local memory

shared memory

...

disk

tape

Figure 1. Hierarchical layers of memory.

As is well-known, processor speed has been increas-
ing much faster than memory speed and it is thus memory
bandwidth that limits the speed attained in practice for a
given operation. Fortunately, matrix-matrix multiplication
involves2mnk FLOPs and onlymn+mk+kn data items.
Thus, by carefully moving data between layers of memory,
high-performance can be attained.Note that the cost of er-
ror detection is of the same order as the cost for loading
and storing to and from a memory layer.

The particular implementation of matrix-matrix multipli-
cation in ITXGEMM, which we modified as part of this re-



search, partitionsC, A, andB as in (4)–(6). The partition-
ing scheme used forA is selected so thatAip fills a large
part of the L2 cache. For the architecture selected to act as
a testbed, an Intel Pentium (R) III, the optimal partitioning
turns out to bemi = kp = 128. (In other words, in the pre-
vious discussionAip is128�128.) ThenB is partitioned so
that a reasonable amount of workspace is required for our
right-sided error detection scheme. In particular, we chose
nj = 512. This means that the matrices are partitioned ex-
actly as in (1)–(3) and updated as required by the left-sided
error detection scheme, withb = 8. Code for error detection
and correction was a straightforward addition to an imple-
mentation that naturally blocked for efficient utilization of
the L1 and L2 caches of the Pentium (R) III processor.

If we consider all floating point operations to be equal
and we count the cost of computing the norm of anm � n
matrix asmn FLOPs, we expect the ratios of overhead to
useful computation shown in Table 2. The overhead for
correction is for the case when exactly one corruption oc-
curs during the entire computation. This correction over-
head scales linearly with the number of corruptions. The
cost per FLOP of a matrix-vector multiplication is often
an order of magnitude greater than the cost per FLOP of
a matrix-matrix multiplication. Thus the above analysis for
the cost of error detection may be optimistic by an order
of magnitude. On the other hand, as mentioned, there are
opportunities for amortizing the cost of the computation of
matrix-vector multiplies and norms of matrices which are
not taken into account in the analysis.

6 Experimental Results

All our experiments were performed on an Intel Pentium
(R) III processor with a 650 MHz clockrate, 16 Kbytes of
L1 data cache and 256 Kbytes of L2 cache, usingIEEE

double-precision floating point arithmetic (u � 2:2 �
10�16). We report performance in MFLOPs/sec. (millions
of floating point operations per second). Notice that the best
performance we have seen on this particular processor with
a high-performance matrix-matrix multiplication is around
530 MFLOPs/sec.

6.1 Fault-tolerance under simulated fault condi-
tions

In order to evaluate the reliability of our error detec-
tion and correction techniques we decided to mirror in our
experiments what we expect to be a realistic fault condi-
tion behavior in practice. Thus, instead of introducing an
error either inA or B before the computation starts, we
introduce the error before one of the updates of the form
Cij  �AipBpj + �Cij is computed. The exact update,

the entry were the error appeared (including the matrix,A
orB), and its magnitude are randomly determined.

We do not analyze the case in which the error appears in
C since, as stated in our theory (see Table 1), that error will
always be detected using any of the detection methods, (at
least, as long as it makes a non-negligible difference in the
result).

The error detection mechanisms performed exactly as
expected. All errors of significance that were introduced
in matrixA were detected by the left-sided and two-sided
detection methods. Similarly, all errors of significance that
were introduced in matrixB were detected by the right-
sided and two-sided detection methods. In practice both
left- and right-sided methods detected errors of significance
introduced in eitherA orB. As predicted, whenever we cre-
ated a matrixA such that the elements in individual columns
added to zero, the left-sided detection method had trouble
detecting errors introduced inB. Whenever we created a
matrixB such that the elements in individual rows added to
zero, the right-sided detection method had trouble detecting
errors introduced inA.

6.2 Performance evaluation

Next, we evaluated the overhead introduced in practice
by our error detection/correction techniques. We added the
error detection and correction mechanisms described in the
previous sections to the implementation of matrix-matrix
multiplication described in ITXGEMM. In [8, 9] we show
that this implementation (without error detection and cor-
rection) is highly competitive with other efforts (e.g. [16],
which does not address fault-tolerance) in providing high-
performance matrix-matrix multiplication for the Intel Pen-
tium (R) III processor.

We report results for the following fault-tolerant matrix-
matrix multiplication implementations:

– L/R/2-sided detect: ITXGEMM-based implementa-
tion with left/right/two-sided detection.

– L/R/2-sided correct: ITXGEMM-based implementa-
tion with left/right/two-sided detection and correction.

Specifically, the error detection and and correction mecha-
nisms were added to matrix-matrix multiplication algorithm
MPP-MMP-MPMdescribed in [8]. A significant error was
introduced in matrixA as described in the previous subsec-
tion. The error was always detected and, if desired, cor-
rected.

Figure 2 shows the performance achieved by the differ-
ent matrix-matrix multiplication implementations for rank-
k updates (m = n; k = 128) and general square matrix-
matrix multiplication (m = n = k). For this prototype
implementation, the error detection methods reduce perfor-
mance by 20-25% even if no error is introduced. When a



Overhead
(mi = kp = 128, nj = 512, b = 8)

m = n = 512, k = 128 m = n = k = 512
Method Detection Correction Detection Correction

right-sided 2.2% 25% 2.2% 6%
left-sided 2.2% 0.4% 2.2% 0.1%
two-sided 4.4% 0.4% 4.4% 0.1%

Table 2. Theoretical overhead for error detection and correction.
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Figure 2. Performance of the matrix-matrix multiplication kernels.



single error is introduced and corrected, the performance of
the right-sided detection and correction method is signifi-
cantly worse. The performance of the left-sided method is
not significantly affected. This supports the observations
made in Section 4.2. Since the left-sided error detection
and correction methods also detects and corrects virtually
all errors introduced inB, the two-sided method is also not
significantly affected.

It should be noted that we expect to reduce overhead sig-
nificantly by carefully amortizing the required additional
computations. Furthermore, while we currently tie the
blocking used for the error detection and correction mecha-
nisms to the blocking used by ITXGEMM for moving data
into the L2 cache, overhead for the detection mechanism
can be reduced if a coarser blocking were allowed. This
would be at the expense of additional memory required for
the roll-back mechanism as well as a higher computational
overhead if a correction becomes necessary.

7 Status

We currently have a complete implementation of the
above ideas for the operations

C  �AB + �C

C  �ATB + �C

C  �ABT + �C

C  �ATBT + �C

Using similar techniques, we have also created fault-
tolerant implementations for all the level 3 BLAS oper-
ations using our Formal Linear Algebra Methods Envi-
ronment [9, 10]. While we currently only target double-
precisions real arithmetic, and only have implementations
for the Intel Pentium (R) III processor, the techniques are
easily extended to single-precision or complex arithmetic
and to other architectures.

The ultimate goal is to create an environment for devel-
oping fault-tolerant linear algebra libraries, the Formal Lin-
ear Algebra Recovery Environment (FLARE), which may
eventually include fault-tolerant implementations for the
major operations included in LAPACK.

8 Conclusion

In this paper, we have significantly extended the the-
ory behind and practice of algorithmic fault-tolerant matrix-
matrix multiplication. In particular, we have expanded upon
existing results relevant to the detection of errors in the
computationC = AB. Based on these theoretical re-
sults, we have provided a practical, fault-tolerant, high-
performance implementation of the matrix-matrix multipli-
cation operation. It should be obvious that the results extend

to all cases of matrix-matrix multiplication that are part of
the BLAS. The experimental results demonstrate that our
methods introduce, in practice, an acceptable level of over-
head (about 20% for the error detection mechanism and
an insignificant additional amount when a correction is re-
quired) relative to high-performance implementations that
do not include algorithmic fault-tolerance.

Additional Information

For additional information:

www.cs.utexas.edu/users/flame/FLARE/ .
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