Fault—Tolerant High—Performance Matrix Multiplication:

Theory and

John A. Gunnels
Department of Computer Sciences
The University of Texas at Austin

Taylor Hall 2.124

Austin, TX 78712
gunnels@cs.utexas.edu

Enrigue S. Quintana—Qrt’
Dept. de Infornatica
Universidad Jaume |

12080 Castetin
Spain
quintana@inf.uji.es

Abstract

In this paper, we extend the theory and practice re-
garding algorithmic fault-tolerant matrix-matrix multipli-
cation, C = AB, in a number of ways. First, we pro-

Practice*

Daniel S. Katz
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099
Daniel.S.Katz@jpl.nasa.gov

Robert A. van de Geijn
Department of Computer Sciences
The University of Texas at Austin
Taylor Hall 2.124
Austin, TX 78712
rvdg@cs.utexas.edu

of the computation in terms of matrix-matrix multiplica-
tion [2, 3, 6, 12]. High-performance for matrix-matrix mul-
tiplication itself results from the fact that the cost of mov-
ing b x b blocks of the operands between the layers of the
memory hierarchy is proportional t3, while this cost can

pose low-overhead methods for detecting errors introducedbe amortized ove® (b*) computations. These observations

not only inC but also inA and/or B. Second, we show
that, theoretically, these methods will detect all errors as
long as only one entry is corrupted. Third, we propose a
low-overhead roll-back approach to correct errors once de-
tected. Finally, we give a high-performance implementa-
tion of matrix-matrix multiplication that incorporates these
error detection and correction methods. Empirical results
demonstrate that these methods work well in practice while
imposing an acceptable level of overhead relative to high-
performance implementations without fault-tolerance.

1 Introduction

impact algorithmic fault-tolerance for linear algebra rou-
tines that spend most of their time in matrix-matrix mul-
tiplication in the following sense:

¢ |f the matrix-matrix multiplication kernel used is fault-
tolerant, the entire operation is largely fault-tolerant.

e Ensuring the integrity of & x b block of a matrix can
be expected to cog?(b?) time. This expense can be
amortized over the)(b) operations performed with
that data.

Thus, not only is the availability of a fault-tolerant matrix-

matrix multiplication an important first step towards cre-
ating fault-tolerant linear algebra libraries, but there is an
inherent opportunity for adding fault-tolerance to matrix-

The high-performance implementation of many linear matrix multiplication while retaining high-performance.

algebra operations depends on the ability to cast most

*This work was partially performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. The work was funded by the
Remote Exploration and Experimentation Project (a part of the NASA
High Performance Computing and Communications Program funded by
the NASA Office of Space Science).

The primary goal for our mechanism is to detect a maxi-
mal fraction of errors while introducing minimal overhead.
As argued in the previous paragraph, for the matrix product,
with a cubic cost in floating—point arithmetic operations, we
can expect to pay at least a quadratic cost. Thus, the goal
is to find a mechanism with a quadratic cost. We follow, in

that sense, the technique described in [13, 14]. Inthose pa- The rest of the paper is structured as follows. In Sec-
pers, the correctness 6f= AB is established by checking tion 2 we briefly describe the intended domain of applica-
d = Cw — ABw for a checksum vectow. The matrix- tion for our methods. In Section 3 we expound upon our the-
matrix multiplication is assumed to have been successful if ory concerning the effects of the introduction of one error
d is of the order of the errors that could be introduced due in one of the matrices during a matrix-matrix multiplication.
to the use of finite precision arithmetic (round-off errors). In Section 4 we describe how to take the results from Sec-
This is a simple application of Result-Checking [15]. In tion 3 from theory to practice (although still at a high level
this paper, we generalize this methodto— aAB + 3C, of abstraction). A working fault-tolerant implementation
the form of matrix-matrix multiplication that is part of the of the matrix product based on a high-performance matrix-
level 3 Basic Linear Algebra Subprograms (BLAS) [5], and matrix multiplication implementation ITXGEMM [8, 9]) is
sharpen the theory behind the method. In particular, we subsequently given in Section 5. The experimental results
show that toguaranteedetection of a single error intro- in Section 6 reveal the low overhead introduced in the ma-
duced in one of the matrice$, B, or C, one must check trix product by our fault—detection mechanism. We briefly
bothd = Cw — ABw ande = vTC — vT AB for check- discuss the current status of the project in Section 7 and
sum vectorsy andw. Finally, we show how to incorpo- concluding remarks are given in Section 8.
rate the techniques in a high-performance implementation
of matrix-matrix multiplication. 2 Target Application

The methods we present are closely related to those de-

scribed in [11]. That paper proposes to augment matrices L . .
A B and(,E as], paper prop g Within NASA's High Performance Computing and Com-

munications Program, the Remote Exploration and Exper-

A imentation (REE) project [1] at the Jet Propulsion Labora-

* _ *
AT = (vT A) B” = (B | Buw)’ and tory aims to enable a new type of scientific investigation by
c Cw taking commercial supercomputing technology into space.
cr = (W) . Transferring such computational power to space will enable

highly-autonomous, flexible missions with substantial on-
(Here, bothy” andw are checksum vectors.) By noting that Poard analysis capability, mitigating control latency issues
in the absence of errors due to fundamental light-time delays, as well as inevitable
bandwidth limitations in the link between spacecraft and

o = (¢ | Cw) _ (A) (B|Buw) ground stations. To do this, REE does not intend to de-

v C | v Cw vTA velop a new computational platform, but rather to define
_ AB | ABuw _ g and demonstrate a process for rapidly transferring commer-

= (vTAB | vTABw) = J cial high-performance computing technology into ultra-low

power, fault-tolerant architectures for space.

they show how a comparison of C with v” AB andCw The traditional method for protecting spacecraft compo-
with ABw can detect and correct errors introduced in ma- nents against faults caused by natural galactic cosmic rays
trix C'. and energetic protons has been radiation-hardening. How-

On the surface, when comparing our methods to [11], it ever, radiation-hardening lowers the clock speed and may
may appear that, from an implementation point of view, we increase the required power of a component. Even worse,
simply perform the matrix multiplies separately rather than the time needed to design and bring a radiation-hardened
as part of augmented matrices. (This shows the simple concomponent into production guarantees that it will be out-
nection between Result-Checking and the approachin [11].)dated when it is ready for use in space. Furthermore, the
However, our approach differs in a number of ways. First, design and production expenses must be spread over a small
we go well beyond the approach in [11] by also developing number of customers, making the per unit cost very high.
a sound theory behind the detection of errors introduced inTypically, at any given time, radiation-hardened compo-
A and B. Second, by adopting the techniques developednents have a power:performance ratio that is an order of
in [14] we explicitly deal with the question of how to differ- magnitude lower, and a cost that is several orders of mag-
entiate errors due to corruption from errors due to round-off. nitude higher than contemporary commaodity off-the-shelf
Third, we take a very different approach to the correction of (COTS) components. The REE projectis therefore attempt-
detected errors by using a roll-back method. Finally, by ing to use COTS components in space and handling, via
adding fault-tolerance to high-performanceémplementa- software, the faults that will occur.
tion of matrix-matrix multiplication we verify that the theo- Most of the transient faults encountered due to radiation
retical results can be implemented without sacrificing high in space will be single event effects (SEES); their presence
performance. requires that the applications be self-checking, or tolerant of

errors, as the first layer of fault-tolerance. Additional soft- 3 Detecting Errors

ware layers will protect against errors that are not caught

by the application [4]. For example, one such layer would In this section we develop a theoretical foundation for
automatically restart programs which have crashed or hungerror detection in the operatiafi = AB whereC, A, and
This works in conjunction with self-checking routines: if B arem x n, m x k, andk x n, respectively. Here, we use
an error is detected, and the computation does not yield cor-partitionings ofd andB by columns and rows, respectively:
rect results after a set number of retries, the error handling

scheme aborts the program so that it can be automatically b
restarted. A=(a | |a) and B=] :
bi;

In an REE system, there will be many places in which _ .
SEEs can cause errors. Layers of memory which are off-We also use two (possibly different) checksum vectors:
processor (main memory, L2 and L3 caches) can be made

error detecting and correcting, so that faults to these lay- 21 T
ers of memory will largely be screened. Most faults will w= : and v’ = (v |- |vm).
therefore impact the microprocessor and its registers or its Wn

L1 cache. SEEs affecting data are particularly troublesome o)) o
because they typically have fewer obvious consequences For simplicity, we first assume that exact arithmetic is
than an SEE that impacts code (e.g. in the L1 instruction employed and then we discuss the tolerance threshold for
cache) — the latter would be expected to cause an excepl€ Case where round-off errors are present.

tion. For this reason, this paper focuses on data corruption, .)
specifically in those components which are on-processor3'1 Exact arithmetic
(L1 cache, registers) which cannot be protected through
hardware, because while the REE Project can modify the
off-processor memory system at relatively low cost, it can-
not modify the processor.

Consider the operatiofl = AB and letC' be the matrix
computed when at most one element of any one of the three
matrices is corrupted during the computation. (We primar-
ily consider a single corruption since most errors will be
A single error correction, double error detection SEEs.) In other words, view the.operation as atomic and

! assume that before the computation one element of B

(SECDED) Hamming code will be used to protect off- is corrupted or afte€’ = AB has been formed one element

processor data. T_his can be applied to cache lines of dataof C'is corrupted. We can think of the error as a matrix of
when they are written or checked when they are read. Inthe formneiejT added to one of the three matrices: heie

L2 and L3 cache, if the fault rate is sufficiently high, it is the magnitude of the error ang denotes thé—th column

processor to alidste Ines of data hat have not been userp 1€ identty matrix. The possible computed resuls are
P hen given in Table 1 in the row labeled™. Naturally, we

g]eﬁg\rlgeﬂﬂ:r\'l\c/’iﬁ g; t;rgc?éézgxlgr:r:hrﬁa?EnEeFr)r:gjr?/CtsS?uebsbir:]cg W|sh to detect the instances in whigh= C_— C Isnonzero
will be required. This can eithér be implementeci as a back- (or, in the presence of round.-off error, “S|gn|f|cant”). Thus,
ground process. (similar to that used for L2 and L3 cache) ore Must compute or approximate the magnltudfoé.g.,
in hardware, as an Field Programmable Gate Array (FPéA) 85|], but we must do so without being able to for

’ Moreover, relative to the cost of computiag the compu-

or Application Specific Integrated Circuit (ASIC) that is on . L
the memory bus. The rate of scrubbing can be tied to the thetatlon of the estimation dfF'o. must be cheap.

error detection rate in order to keep the error rate roughly

constant, for power efficiency. Right-sided error detection criterion

Consider now the computation df = Cw — Cw, where

Due to the nature of most scientific codes, including w is a vector with entriess; = 1, ¢ = 1,...,n. From
the data processing applications currently being studied byTable 1 we see that the corruption is in matribx3@ or C,
REE, much of their time is spent in certain common nu- ||d||s = ||F|ls- AS we do not havé’, but a possibly cor-
merical subroutines — as much as 70% in one NGST (Nextrupted approximatior(/, we useA(Bw) instead ofCw in
Generation Space Telescope, the planned successor to thhe computation ofl; only three matrix-vector multiplica-
Hubble Space Telescope) application, for example. Protecttions are then required to compute These matrix-vector
ing these subroutines from faults provides one level of pro- multiplications are cheap relative to a matrix-matrix multi-
tection in an overall software-implemented fault-tolerance plication. Computing/ and its norm is exactly the proce-
scheme. dure suggested in [14].

Matrix Corrupted
A=A+neel | B=B+neel | C=0C+neel
C AB AB AB + neje]
F=C-C neib]T naie]T 7761'6]7'1
[Pl Il e il]
d=Fw neib?w Nw;a; nw;e;
lldlloo [nl|b] wl [w; [ll@iloo [l
el =vT'F nuib]T HUTCLZ'G? nViGIT
lle" Nl [nllil[167 110 nllv" ail Inllvil
criterion lle™ Moo (= Wil Flloc) | Nlloo (= willlEllso) | lldlloo(= lw;ill Fllso)
or
le" lloo (= w31 Floo)

Table 1. Some measurements and error detection criteria.

However, if the corruption occurs i, ||d||.c =
|77||8§.”w|, which can be small even ifF||« is large. In
particular, if the elements of thie-th row of B sum to zero,
lld|l« = 0 regardless of the the magnitul&'||... While
this is not likely to happen in practice, the method is clearly
not bulletproof for detecting corruption iA. A simple ex-

ample of a matrix encountered in practice which has rows

Two-sided error detection criterion

Clearly, in order to guarantee the detection of the corruption
of a single element in one of the three matrices, one must
compute||d|| if the error is in eitheB or C, and||e|| if

the error is in eitherd or C.

and/or columns with entries that sum to zero is the matrix 3.2 Tolerance threshold and round-off errors

derived from a discretization of Poisson’s equation using a

five-point stencil.

We will refer to the error detection criterion which places
checksum vectow on the right as aight-sidederror detec-

Unfortunately, computers are not equipped to deal with
infinite precision arithmetic and rounding errors due to fi-
nite precision arithmetic will occur. In our error detection

tion criterion. This criterion is guaranteed to detect a single setting this means that, even if no error is introduced in any

error introduced iB or C. It is highly likely to detect such
an error introduced inl.

Left-sided error detection criterion

Next, consider the computatien= v2'C' — v7'C wherev

is a vector with entries; = 1,7 =1,...,m. From Table 1
we see thalf the corruption is in matrixd or C, ||e? || =
IF|ls. Again, by computing”C = (v A) B we can ob-
tain e with only three matrix-vector multiplications. In this
case, if the corruption was iR, ||e”||o = |n||vTa;|, which
can be small even ifF'||, is large. In particular, if the el-
ements of the—th column ofA sum to zero||e|| = 0.
Thus, the method is clearly not completely foolproof for
detecting corruption oB.

We will refer to the error detection criterion which places
checksum vectow on the left as deft-sidederror detection

of the matrices, it may well be the case thjét — C|| # 0.
Round-off error analysis of matrix operations has been a

classic area of numerical analysis for the last half-century.

A result found in standard textbooks (e.g., [7]) is that for

an implementation of the matrix produ€t = AB, based

on gaxpy dot product or outer productcomputations, the

computed results, (4 B), satisfies

Ifl(AB) — AB||o
< max(m,n, k) U [|4]|s[|Bllc + O(u?),

whereu is the unit round-off of the machine (the difference
between 1 and the next larger floating point number repre-
sentable in that machine).

Therefore, our error detection mechanism should declare
that an error has occurred when

ldlloo > 7 | AllscllBlloo 0 [leF]l > 7 [|Alloo 1 Bll o,

criterion. This criterion is guaranteed to detect a single errorwherer = max(m,n, k) u.

introduced inA or C'. Itis highly likely to detect such an
error introduced inB.

These results on thresholds for detecting errors merely
reiterate the observations made in [14].

3.3 Specialization to our situation 4.1 Right-sided error detection method

A simple approach is to compufe = AB, and check
As mentioned in Section 2, our primary concern involves the computed by determining whether
a corruption affecting data which reside in the L1 cache. .
Thus this corruption does not necessarily persist during the |1Dw — A(Bw)||oo < 7 [|A]loo||Bl|oo-
entire matrix-matrix multiplication. Therefore, it may be

more informative to view matriceS, A, andB partitioned If the condition is met, thex! < . + 5C"is performed;

otherwiseD is recomputed. (Note: our assumption is that a

as follows: copyof A or B is corrupted in some level of cache memory.
Thus, the recomputation can use the original datd end
Cu | -] Cin B.) If amore stringent threshold is used, a false error due to
C = : : , round-off can occur. In this case one can determine whether
Coi I 1 Cun or not||pw - A(Bw.)||oo is.exactly gqugl twice in a row. It
itis, C' is updated since this would indicate that the scheme
A || A resulted in a false detection due to round-off error.
A = : : , and The overhead from error detection3smn FLOPs for
1 1A forming Dw and2kn + 2mk FLOPs for formingA(Bw)
M1 MK i
B B for a total of2mn + 2kn + 2mk FLOPS. In addition, the
11 e 1N

computations of| A ||, and||B||« costO(mk) andO(kn),

B = : . : , respectively. If even a single error is detected, the cost of the
operation doubles. Also, storage fbr, mn floating point
numbers, is required.

Bgi |- | Bkn

whereC; ism; x nj, Aip iSm; X kp, andBy; isky, X nj. 45 | oft-sided error detection method

Now C;; is computed as a sequence of smaller updates
Cij < AipBy; + Cy; and the corruption will be encoun- A simple approach is to again compufe = AB, and
tered in exactly one such update. In other words, for one check the compute® by testing if||v” D — (v 4) B||s <
tuple of indices(i, j, p) one of the operands is corrupted 7 ||A||o||B]|. If the condition is met, the@ « aD +

by changing one element. Let us assumeNEt@t is cor- BC; otherwiseD is recomputed. v D — (v A)B||s
rupted byne,.el. Then the computed matri¥ is equal to is exactly equal twice in a rovg is updated since it is as-
C except in thei, j) block, which equal€’;; + na!*”’e”, sumed that a corruption was erroneously detected.
whereaff’p) denotes the—th column ofA;,. If w again A more sophisticated approach partitioBs C', and D
equals the vector of all one§C' — C||o = |17|||aff"p)||OO as
and||Cw—Cw|ls = [|l|al*"||. It follows that the right- B = (B |--|By), (1)
sided detection criterion for detecting errorsBror C still

c = ci|---|C , and 2
works. The theory behind the left-sided and two-sided de- (! | | N) @)
tection criteria can be extended similarly. D = (Dy | | Dn)) 3)

and computed; = AB;. After each such computation,
.) the magnitude of|v”D; — y”B;||« is checked, where
4 Towards a Practical Implementation yT = vTA can bll computed on(|:|e and reused. As before,
if no error is detected(); « aD; + BC;; otherwiseD; is
))]) recomputed. Now only workspace for ofg is required
~In this section we deal with two issues concern- 4.4 fewer computations need to be repeated when an error
ing the practical implementation of a fault-tolerant high- s getected. Note that this is not possible for the right-sided
performance matrix-matrix multiplication kernel. First, in approach since for ead;w the productd (B;w) must be
addition to error detection, we must also 'be able to COr- computed, which is expensive whd) has few columns,
rect any errors that are exposed. Second, in order to mainyg jt is in our implementation (described in the experimen-
tain high-performance, we must let the theory guide us to a;g section).
scheme that imposes as little overhead as is possible. Given a column partitioning of matrice8; and B; of
ConsiderC = aAB + BC whereC, A, and B have width b, the overhead from error detection is n@mk
dimensionsn xn, m x k andk xn, respectively. The costof FLOPs for formingy” = vTA, 2mb FLOPs for form-
this operation i2mnk floating point operations (FLOPs). ing vTDj and2kb FLOPs for formingv” B;. Taking into

account that/b panels of D must be computed, the to- these individual updates can use the error detection schemes
tal overhead becomesnn + 2kn + 2mk FLOPS, equiv- described above. Using this method workspace can be
alent to the cost of the right-sided error detection schemegreatly reduced as can the cost of a recomputation. More-
above. In addition, the computations|pl||. and||B;||c, over, there are a number of opportunities for the reuse of
j =1,...,N, costO(mk) andO(kn), respectively. If a resultsB,;w, v1 A;,, || Bpjllco, and|| Asp||0, Wherew and
single error is detected during the update’gfonly 2mbk v have length; andm;, respectively.

FLOPs are repeated. In this case, only storage for one panel Notice that the proposed error detection and correction

D;, mb floating point numbers, is required. scheme can now handle multiple errors with respect to the
overall matrix-matrix multiplication, as long as only one er-
4.3 Two-sided error detection ror occurs during the computatiohy, ;.

Naturally the two above-mentioned techniques can be5 An Actual Implementation
combined to yield a two-sided error detection method. Here
all of D is computed using a left-sided error detection In this section we briefly outline our implementation of
method, after which a right-sided error detection method the ideas presented above.
is used to verify that no undetected errors slipped by. If no We start by describing a high-performance implementa-
errors are detected; is appropriately updated. tion of matrix-matrix multiplication, ITXGEMM [8], devel-
The computational cost of two-sided error detection is oped at UT-Austin in collaboration with Dr. Greg M. Henry
exactly twice that of the one-sided error detection methods.of the Intel Corporation. To understand how ITXGEMM
Storage for all ofD, or mn floating point numbers, is re- uses hierarchical memory to attain high performance recall
quired. However, the left-sided error detection scheme will that the memory hierarchy of a modern microprocessor is
almost always detect errors and thus the overhead for cor-often viewed as a pyramid (see Fig. 1). At the top of the

recting a single error is on®mbk FLOPS. pyramid there are the processor registers, with extremely
fast access. Atthe bottom, there is disk and even slower me-
4.4 Reducing overhead dia. As one goes down the pyramid, the amount of memory

increases along with the time required to access that mem-

Even in the case where no error is detected, the above®y:
schemes, particularly the right- and two-sided approaches,

carry a considerable overhead in required workspace. In ast expensive
addition, if an error is detected with these methods, the cost
of recomputation can double the overall cost of the matrix-
matrix multiplication. In this section we discuss how both
of these overheads can be overcome. |
- . ocal memory
Specifically, partitiorC, A, andB as
shared memory \
Ciy |-+ | Oin / \
C = SN I , () / disk \
Ol Cun slow tape \ cheap
All e AIK
4 = S I , and) Figure 1. Hierarchical layers of memory.
A | -+ | Auk _ .
B B As is well-known, processor speed has been increas-
L2 LN ing much faster than memory speed and it is thus memory
B = N : (6) bandwidth that limits the speed attained in practice for a
Bri |- | Brn given operation. Fortunately, matrix-matrix multiplication
involves2mnk FLOPs and onlynn +mk + kn data items.
whereC; ism; x nj, Ayp iISm; x ky, andB,; isk, x n;. Thus, by carefully moving data between layers of memory,

(While this partitioning looks remarkably like the one in high-performance can be attainedote that the cost of er-
Section 3.3, the discussion in that section has no bearing orror detection is of the same order as the cost for loading
the discussion below.) Theti can be computed by a scal- and storing to and from a memory layer.

ing C' « BC followed by updates’;; < aA;,By; + Cij, The particularimplementation of matrix-matrix multipli-
fori=1,...,.M,j=1,...,N,p=1,...,K. Each of cation in ITXGEMM, which we modified as part of this re-

search, partition§’, A, andB as in (4)—(6). The partition- the entry were the error appeared (including the mattix,
ing scheme used fad is selected so thad;, fills a large or B), and its magnitude are randomly determined.

part of the L2 cache. For the architecture selected to act as We do not analyze the case in which the error appears in
a testbed, an Intel Pentium (R) Ill, the optimal partitioning C since, as stated in our theory (see Table 1), that error will
turns out to ben; = k, = 128. (In other words, in the pre- always be detected using any of the detection methods, (at
vious discussiom;, is 128 x 128.) ThenB is partitioned so least, as long as it makes a non-negligible difference in the
that a reasonable amount of workspace is required for ourresult).

right-sided error detection scheme. In particular, we chose The error detection mechanisms performed exactly as
n; = 512. This means that the matrices are partitioned ex- expected. All errors of significance that were introduced
actly as in (1)—(3) and updated as required by the left-sidedin matrix A were detected by the left-sided and two-sided
error detection scheme, with= 8. Code for error detection detection methods. Similarly, all errors of significance that
and correction was a straightforward addition to an imple- were introduced in matrixX3 were detected by the right-
mentation that naturally blocked for efficient utilization of sided and two-sided detection methods. In practice both

the L1 and L2 caches of the Pentium (R) Ill processor. left- and right-sided methods detected errors of significance
If we consider all floating point operations to be equal introduced in eithed or B. As predicted, whenever we cre-
and we count the cost of computing the norm ofrarx n ated a matrix4 such that the elements in individual columns

matrix asmn FLOPs, we expect the ratios of overhead to added to zero, the left-sided detection method had trouble
useful computation shown in Table 2. The overhead for detecting errors introduced iB. Whenever we created a
correction is for the case when exactly one corruption oc- matrix B such that the elements in individual rows added to
curs during the entire computation. This correction over- zero, the right-sided detection method had trouble detecting
head scales linearly with the number of corruptions. The errors introduced imi.
cost per FLOP of a matrix-vector multiplication is often
an order of magnitude greater than the cost per FLOP of6.2 Performance evaluation
a matrix-matrix multiplication. Thus the above analysis for
the cost of error detection may be optimistic by an order Next, we evaluated the overhead introduced in practice
of magnitude. On the other hand, as mentioned, there arey our error detection/correction techniques. We added the
opportunities for amortizing the cost of the computation of error detection and correction mechanisms described in the
matrix-vector multiplies and norms of matrices which are previous sections to the implementation of matrix-matrix
not taken into account in the analysis. multiplication described in ITXGEMM. In [8, 9] we show
that this implementation (without error detection and cor-
rection) is highly competitive with other efforts (e.g. [16],
which does not address fault-tolerance) in providing high-
performance matrix-matrix multiplication for the Intel Pen-
All our experiments were performed on an Intel Pentium tium (R) Ill processor.
(R) lll processor with a 650 MHz clockrate, 16 Kbytes of We report results for the following fault-tolerant matrix-
L1 data cache and 256 Kbytes of L2 cache, usipge matrix multiplication implementations:
(ljoEE)Gle-premsmn floating pomt'anthmetm (~ 2'2.X. — L/R/2-sided detect: ITXGEMM-based implementa-
0~'°). We report performance in MFLOPs/sec. (millions . . X . .
.) . . tion with left/right/two-sided detection.
of floating point operations per second). Notice that the best
performance we have seen on this particular processor with — |/R/2-sided correct: ITXGEMM-based implementa-

a high-performance matrix-matrix multiplication is around tion with left/right/two-sided detection and correction.
530 MFLOPs/sec.

6 Experimental Results

Specifically, the error detection and and correction mecha-
. . nisms were added to matrix-matrix multiplication algorithm
6.1 I_:ault-tolerance under simulated fault condi- ppp-MMP-MPMescribed in [8]. A significant error was
tions introduced in matrix4 as described in the previous subsec-
tion. The error was always detected and, if desired, cor-
In order to evaluate the reliability of our error detec- rected.
tion and correction techniques we decided to mirror in our Figure 2 shows the performance achieved by the differ-
experiments what we expect to be a realistic fault condi- ent matrix-matrix multiplication implementations for rank-
tion behavior in practice. Thus, instead of introducing an k updates«{: = n, k& = 128) and general square matrix-
error either inA or B before the computation starts, we matrix multiplication (n = n = k). For this prototype
introduce the error before one of the updates of the formimplementation, the error detection methods reduce perfor-
Cij < adypByj + BC;; is computed. The exact update, mance by 20-25% even if no error is introduced. When a

550

500

450

Overhead

m=mn =512,k =128

m=n=k=>512

Method Detection | Correction || Detection | Correction
right-sided 2.2% 25% 2.2% 6%
left-sided 2.2% 0.4% 2.2% 0.1%
two-sided 4.4% 0.4% 4.4% 0.1%

Table 2. Theoretical overhead for error detection and correction.

550

Matrix size (m=n=k)

()

- o0
400 D O Sttt SRR RES: U 400 oo gm0
o P o A Q e
%350 N € a a = 2 4 4 b %350 == A a a a 4 2 é
o / a a . B
G 300 g 1] 9300 lab s
L & [¢ fp
=250 1 =250 ~ g
200 q 200 e o
o
150 q 150
—— ITXGEMM i —6— ITXGEMM
100 o~ R-sided detect 100 o~ R-sided correct
50 -0- L-sided detect i 50 -0 - L-sided correct
4 2-sided detect 4 2-sided correct
0 . . . | | 0
0 100 200 300 400 500 0 100 200 300 400 500
Matrix size (m=n) with k=128 Matrix size (m=n) with k=128
(@) (b)
550 550
500 q 500
450 q 450
400 q 400
2 3
350 BT e 1| @350
g e g
G300) & 1] G300
LL / L /
= 250 4 1 = 250 P
200 2 : 200 s © oo
150 b 150 o
100 —— ITXGEMM 4 100 —o— ITXGEMM
o~ R-sided detect o~ R-sided correct
50 - L-sided detect 4 50 0 - L-sided correct
4 2-sided detect 4 2-sided correct
0 . . . | | 0 . . . | |
0 100 200 300 400 500 0 100 200 300 400 500

Matrix size (m=n=Kk)

(d)

Figure 2. Performance of the matrix-matrix multiplication kernels.

single error is introduced and corrected, the performance ofto all cases of matrix-matrix multiplication that are part of

the right-sided detection and correction method is signifi- the BLAS. The experimental results demonstrate that our
cantly worse. The performance of the left-sided method is methods introduce, in practice, an acceptable level of over-
not significantly affected. This supports the observations head (about 20% for the error detection mechanism and
made in Section 4.2. Since the left-sided error detectionan insignificant additional amount when a correction is re-
and correction methods also detects and corrects virtuallyquired) relative to high-performance implementations that

all errors introduced iB, the two-sided method is also not
significantly affected.

do not include algorithmic fault-tolerance.

It should be noted that we expect to reduce overhead sig-pdditional Information

nificantly by carefully amortizing the required additional
computations. Furthermore, while we currently tie the
blocking used for the error detection and correction mecha-
nisms to the blocking used by ITXGEMM for moving data
into the L2 cache, overhead for the detection mechanism

For additional information:

www.cs.utexas.edu/users/flame/FLARE/

can be reduced if a coarser blocking were allowed. This References

would be at the expense of additional memory required for
the roll-back mechanism as well as a higher computational
overhead if a correction becomes necessary.

7 Status

We currently have a complete implementation of the
above ideas for the operations
c aAB + pC
c aATB + pC
C aABT + BC
c aATBT + pC

-
-
-
-

Using similar technigues, we have also created fault-
tolerant implementations for all the level 3 BLAS oper-

ations using our Formal Linear Algebra Methods Envi-

ronment [9, 10]. While we currently only target double-

precisions real arithmetic, and only have implementations
for the Intel Pentium (R) Ill processor, the techniques are
easily extended to single-precision or complex arithmetic
and to other architectures.

The ultimate goal is to create an environment for devel-
oping fault-tolerant linear algebra libraries, the Formal Lin-
ear Algebra Recovery Environment (FLARE), which may
eventually include fault-tolerant implementations for the
major operations included in LAPACK.

8 Conclusion

In this paper, we have significantly extended the the-
ory behind and practice of algorithmic fault-tolerant matrix-
matrix multiplication. In particular, we have expanded upon
existing results relevant to the detection of errors in the
computationC = AB. Based on these theoretical re-
sults, we have provided a practical, fault-tolerant, high-
performance implementation of the matrix-matrix multipli-
cation operation. It should be obvious that the results extend

[1] Remote Exploration and Experimentation Project
Plan, July 2000http://ree.jpl.nasa.gov/

[2] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra,
J. DuCroz, A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. SorendeAPACK

Users’ Guide SIAM, Philadelphia, 1992.

[3] E. Barragy and R. van de Geijn. BLAS performance
for selected segments of a high p EBE finite element
code.International Journal on Numerical Methods in

Engineering 38:1327-1340, 1995.

[4] F. Chen, L. Craymer, J. Deifik, A. J. Fogel, D. S.
Katz, A. G. Silliman, Jr., R. R. Some, S. A. Up-
church, and K. Whisnant. Demonstration of the Re-
mote Exploration and Experimentation (REE) fault-
tolerant parallel-processing supercomputer for space-
craft onboard scientific data processing. Aroceed-
ings of the IEEE International Conference on Depend-

able Systems and Networkmges 367-372, 2000.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling,
and lain Duff. A set of level 3 basic linear algebra
subprograms.ACM Trans. Math. Soft.16(1):1-17,
March 1990.

[6] Jack J. Dongarra, lain S. Duff, Danny C. Sorensen,
and Henk A. van der VorstSolving Linear Systems
on Vector and Shared Memory ComputerSIAM,
Philadelphia, PA, 1991.

[7] GeneH. Golub and Charles F. Van Lo&matrix Com-
putations The Johns Hopkins University Press, Balti-
more, 2nd edition, 1989.

[8] J. A.Gunnels, G. M. Henry, and R. A. van de Geijn. A
family of high-performance matrix multiplication al-
gorithms. Submitted tdhe 2001 International Con-
ference on Computer Science (ICCS20043y 2001.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

John A. Gunnels, Greg M. Henry, and Robert A.
van de Geijn. Formal Linear Algebra Methods En-
vironment (FLAME): Overview. FLAME Working

Note #1 CS-TR-00-28, Department of Computer Sci-
ences, The University of Texas at Austin, Nov. 2000.

John A. Gunnels and Robert A. van de Geijn. Formal
methods for high-performance linear algebra libraries.
In Ronald F. Boisvert and Ping Tak Peter Tang, edi-
tors, The Architecture of Scientific Softwatl€luwer
Academic Press, 2001.

K. Huang and J.A. Abraham. Algorithm—based fault
tolerance for matrix operationtEEE Trans. on Com-
puters 33(6):518-528, 1984.

B. Kagstom, P. Ling, and C. Van Loan. GEMM-based
level 3 BLAS: High performance model implementa-
tions and performance evaluation benchmad®MS
24(3):268-302, 1998.

Paula Prata and do"Gabriel Silva. Algorithm based
fault tolerance versus result-checking for matrix com-
putations. InProceedings of the Twenty-Ninth Annual
International Symposium on Fault-Tolerant Comput-
ing, pages 4-11, 1999.

M. Turmon, R. Granat, and D. Katz. Software—
implemented fault detection for high—performance
space applications. IRroceedings of the IEEE Int.
Conf. on Dependable Systems and Netwopeages
107-116, 2000.

H. Wasserman and M. Blum. Software reliability
via run-time result-checking.Journal of the ACM
44(6):826—-849, 1997.

R. Clint Whaley and Jack J. Dongarra. Automati-
cally tuned linear algebra software. Rroceedings
of SC’98 1998.

