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Abstract—When developing numerical methods, or applying specific to a single geometry and application, or more generally
them to the simulation and design of engineering components, applied to a class of problems. The algorithms are numerical
it inevitably becomes necessary to examine the scaling of thesolutions to a mathematical model developed in the time or

method with a problem’s electrical size. The scaling results from f d . d be b d the int | fi
the original mathematical development; for example, a dense ''€¢qUENCY domain and can be based on the integral equation

system of equations in the solution of integral equations, as well as OF partial differential equation form of Maxwell's equations.
the specific numerical implementation. Scaling of the numerical A survey of the many forms of mathematical modeling and
implementation depends upon many factors; for example, direct numerical solution can be found in [1], [2]. The goal of
or iterative methods for solution of the linear system, as well as this paper is to examine the scalability of certain numerical

the computer architecture used in the simulation. In this paper, uti both I tial alqorith d th
scalability will be divided into two components—scalability of the solutions both generally as sequential algorithms, an en,

numerical algorithm specifically on parallel computer systems SpPecifically, as parallel algorithms using distributed memory
and algorithm or sequential scalability. The sequential imple- computers. Parallel computers are evolving, surpassing tradi-

mentation and scaling is initially presented, with the parallel tional computer architectures by offering the largest memories
implementation following. This progression is meant to illustrate and fastest computational rates to the user, and they will

the differences in using current parallel platforms and sequential continue to evolve for several more generations in the near
machines and the resulting savings. Time to solution (wall-clock g9

time) for differing problem sizes are the key parameters plotted fUtU“_? (3] _ . _
or tabulated. Sequential and parallel scalability of time harmonic This paper provides an overview of solutions to Maxwell’s

surface integral equation forms and the finite-element solution to  equations implicitly defined through systems of linear equa-
the partial differential equations are considered in detail. tions. Sequential and parallel scalability of time-harmonic
Index Terms—Finite-element methods, integral equations. surface integral-equation forms and the finite-element solution
to the partial differential equations are considered. More
general scalability of other sequential algorithms can be found
in [4]. Initially, in Section Il, a short review of the scalability
HE application of advanced computer architecture anfl parallel computers is presented. In Sections lll and 1V,
software to a broad range of electromagnetic problemgspectively, specific implementations of the MoM solution to
has allowed more accurate simulations of electrically larggitegral-equation modeling and a finite-element solution will
and more complex components and systems than previous§/discussed. The scalability of sequential solutions and related
available. Computational algorithms are used in the desiggduced memory methods will be considered, followed by an
and analysis of antenna components and arrays, wavegus@mination of parallel scalability and computer performance
components, semiconductor devices, and in the predictigft these algorithms. The size of problems capable of being
of radar scattering from aircraft, sea surface or vegetatiadkamined with current computer architectures will then be
and atmospheric particles, among many other applicationsjiéed, with scalings to larger size problems also presented.
scattering algorithm, for example, may be used in conjunction
with measured data to accurately reconstruct geophysical data.
When used in design, the goal of a numerical simulation
is to limit the number of trial fabrication and measurement Parallel algorithm scalability is examined differently from
iterations needed. The algorithms are used over a wide rangseduential algorithm scalability or, more precisely, scalability
frequencies, materials and shapes, and can be developed torbeshared memory (common address space) machines with
no interprocessor communication overhead. Since a parallel
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that the storage and computational load are balanced, aodlability and scalability of the numerical algorithm specif-
the amount of communication between processors is minimedlly on parallel computer systems. Algorithmic scalability
[5], [6]. When this is not handled properly, efficiency igefers to the amount of computer memory and time needed to
lower than 100%, where 100% is the machine performancemplete an accurate solution as a function of the electrical
when all processors are performing independent calculaticsige of the problem. Scalability on a parallel computer system
and no time is used for communication. If the problem igefers to the ability of an algorithm to achieve performance
decomposed poorly, some processors will work while othepsoportional to the number of processors being used as out-
stand idle, thereby lowering machine efficiency. Similarly, ifined above. The sequential implementation and scaling is
calculations are load balanced but processors must waitindially presented with the parallel implementation following.
communicate data, the efficiency is lowered. Scalability arkhis progression is meant to illustrate the differences in using
efficiency are defined to quantify the parallel performance ofaarrent parallel platforms versus sequential machines, and the
machine. Scalability (also termed speedup) is the ratio of timesulting savings. Clearly, different mathematical formulations
to complete calculations sequentially on a single processordan lead to alternate numerical implementations and different
that on P processors scalings. The objective of numerical modeling is to provide
T an accurate simulation of the measurable quantities in an
= = (1) amount of time that is useful for engineering design. With
(p) this objective, time to solution (wall-clock time) for differing

The efficiency is then the ratio of scalability to the numbeproblem sizes is the key parameter plotted or tabulated.
of processors

lll. I NTEGRAL EQUATION FORMULATIONS

=5 (2)  The method of moments (MoM) is a traditional algorithm

_ ) o _used for the solution of a surface integral equation [7], [8]. This
If an algorithm issues no communication calls, and there is B&hnique can be applied to impenetrable and homogenous

component of the calculation that is sequential and, therefo%jectsy objects where an impedance boundary condition accu-
redundantly repeated at each processor, the scalability is eqgdly models inhomogenous materials or coatings, and those
to the number of processo and the efficiency is 100%. jnnomogenous objects that allow the use of Green'’s functions
The scalability, as defined, must be further clarified if it igpecific to the geometry. A dense system of equations results
to be meaningful since the amount of storage, i.e., problefyy discretizing the surface basis functions in a piecewise
size, has not been included in the definition. Two regimegntinuous set, with this system being solved in various ways.
can be considered—fixed problem size and fixed grain sizge components of MoM solutions that affect the algorithmic

The first, fixed problem size, refers to a problem that is smaltg|apility are the matrix fill, and matrix solution. A system
enough to fit into one or a few processors and is SucceSS'VSWequations

spread over a larger sized machine. The amount of data and
calculation in each processor will decrease and the amount of AX =B 3)

commur!lcanon will increase. The eff|C|.ency must, there.for?esults from the MoM, wheré\ generally is a nonsymmetric
successively decrease, reaching a point where CPU time

ication bound. Th d. fixed arain si bl cb%nplex-valued square matrix, a8l and X are complex-
communication bound. 1he second, TIxed grain size provienzy, q 4 rectangular matrices when multiple excitations and
refers to a problem size that is scaled to fill all the memory

th hine | Th t of dat d calculation i lution vectors are present. The solution of (3) is most
€ machine in use. The amount ordata and caiculation in €a¢ veniently found by an LU factorization

processor will be constant, and in general, much greater than

the required amount of communication. Efficiency will remain A=LU 4

high as successively larger problems are solved. Fixed grain L and | q . lar f ¢
problems ideally exhibit scalability that is a key motivatiof’ '€7€L an U are lower and upper triangular factors At

for parallel processing; successively larger problems can Ege solutm_n f_orX is computed by successive forward and
mapped onto successively larger machines without a loss @I‘:k substitutions to solve the triangular systems
efficiency. LY =B

When developing numerical methods for electromagnetics, UX =Y. )
or applying them to the simulation and design of engineering
components, it inevitably becomes necessary to examine Because the system in (3) is not generally positive definite,
scaling of the method with a problem’s electrical size. Thews of A are permuted in the factorization, leading to a stable
scaling results from the original mathematical developmeratgorithm [9]. Table | is a listing of computer storage and time
for example, a dense system of equations in the solution sufalings for a range of problem sizes when using standard LU
integral equations, as well as the specific numerical impldecomposition factorization and readily available forward and
mentation. Scaling of the numerical implementation depenHackward solution algorithms [10]. The table is divided along
upon many factors; for example, direct or iterative method®lumns into problem size, factorization, and solution compo-
for solution of the linear system, as well as the computaents. The first column fixes the memory size of the machine
architecture used in the simulation. In the rest of this papdring used; the number of unknowns and surface area modeled
scalability will be divided into two components—algorithmigassuming 200 unknowns?) based on this memory size are
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TABLE |
SCALING OF METHOD OF MOMENTS MATRIX FACTORIZATION AND SOLUTION ALGORITHMS
PROBLEM SIZE FACTOR SOLVE (1 excitation)
MEMORY N AREA 0.1 10 1000 0.1 10 1000
(Mbytes) (5] Gflops machine performance Gflops machine performance
128 2,800 14 12.2 mins | 0.12 mins | 0.001 mins | 1.25 secs 107 secs 10" secs
256 4,000 20 35.6 0.36 0.004 2.55 2.5x10? 2.5x10*
512 5,600 28 97.6 0.98 0.010 5.01 5.0x10? 5.0x10%
1024 8,000 40 284.4 2.84 0.028 10.21 0.10 0.001
8192 22,627 113 107.3 hrs 1.07 hrs 0.017 hrs | 1.36 mins | 102 mins | 10" mins
32,768 45,254 226 - 8.58 0.086 - 5.5x10? 5.5x10*
131,072 90,509 452 - 68.65 0.687 - 0.22 0.002
524,288 181,019 905 - - 5.492 - - 0.009

in the next columns. The factor and solve times are basethtrix while reducing storage are summarized in [15], while
on the performance of three classes of machine, current higimother is the fast multipole method [16], [17]. This approach
end workstation (0.1 Gigaflops), current supercomputer (d@composes the impedance matrix in a manner that also
Gigaflops), and next generation computer (1000 Gigaflopsgduces the needed storagent®y. The fast multipole method
Similarly, the rows are divided into the top four whichhas been parallelized in [18], where it is suggested that an Intel
would typically correspond to current generation workstationBaragon system with 512 nodes each containing 32 Mbytes of
and the lower four that correspond to supercomputer clasemory could solve a problem with 250000 basis functions.
machines. Due to the nature of the dense matrix data structures -
[10] in the factorization algorithms, this component of thé: Scalability on Parallel Computers
calculation can be highly efficient on general computers. A To specifically examine parallel scalability, the electric-field
value of 80% efficiency of the peak machine performandstegral-equation model developed in the PATCH code [19],
is used for the time scalings. The backward and forwafd@O] is used. This code uses a triangularly faceted surface
solution algorithms though operate sequentially on triangulerodel of the object being analyzed, and builds a complex
matrix systems, resulting in reduced performance, and a 5@#nse matrix system [identical to that given in (3)]
efficiency is used in these columns. This performance will ZI=V (6)
increase when many excitations (right-hand sides) are involve
in the calculation, resulting in performance closer to peak. w
The time for factorization, scaling &2, can limit the time Z; ;= ﬂTi(F) cﬁﬂ J; ()G — ") dr’ (7)
ds ds

ere

of the calculation for large problems, even if the matrix can
be assembled and stored. An alternative to direct factorizatigRd ; and j are indices on the edges of the surface facets,

methods is the use of iterative solvers of the dense systeiis the Green's function for an unbounded homogeneous
[11], [12]. These methods are even more useful if multiplgpace 7 and " are arbitrary source and observation points,
right-hand sides are present, since the iterative solvers explgi {T,, J;} are current testing and expansion functions.
information in these vectors [11]. If the convergence rate cahe impedance matrixZ) is factored by means of an LU
be controlled and the number of iterations required to complgtg:torization, and for each vectdf a forward and backward
a solution are limited, the solution time can be reduced ggbstitution is performed to obtali the unknown currents on
compared to that of the direct factorization methods. the edges of the surface facets. It is then a simple matter to
The direct limitation of integral-equation methods is thgompute radar cross section (RCS) or other field quantities by a
memory needed to store the dense matrix. Larger problefagward integral. The elements of the PATCH code considered
can only be solved by circumventing this bottleneck. Oni@ the parallelization are matrix fill, matrix factorization and
approach to this problem is to use higher order parametgelution of one or many right-hand sides, and the calculation of
basis functions which reduce the number of unknowns need®sld quantities. The computation cost of these three elements
to model sections of the surface [13]. However, it is cleanust be examined in relation to increasing problem size and
that the growth in memory required for storage of the densgcreasing number of processors to understand the scalability
complex impedance matri¥\?), cannot be overcome by only of the PATCH code.
slightly reducing the size oV or by increasing the number Matrix Equation Fill: Since the impedance matrix is a
of computer processors applied to the problem. Alternativ@mplex dense matrix of siz&, where NV is the number of
methods are, thus, desirable. edges used in the faceted surface of the object being modeled,
One such method uses special types of basis functionsttie matrix hasV? elements, and filling this matrix scales as
produce a sparse impedance matrix [14], reducing the storagé. One method for reducing the amount of time spent in
from the N? to alN where o is a constant independentthis operation when using a parallel computer is to spread
of N. The resulting sparse system can be solved using e fixed number of elements to be computed over a large
methods described in latter sections of this paper. Othmumber of processors. Since the amount of computation
classes of methods for generating and solving the impedarngetheoretically fixed (neglecting communication between
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processors), applying processors to this task should provide PERFORMANCE OF MATRIX SOLUTION ALGORITHM
a time reduction ofP. However, the computations required 120 Cray 190 o =100
by the PATCH code’s basis functions involve calculations > J 50240 i
performed at the center of each patch that contribute to thetL 100J - —— q%
matrix elements associated with the three current functlonsLL 1 (etimate)
on the edges of that patch. The sequential PATCH code will g 807 5120 2
loop over the surface patches and compute partial integralsg ] i
for each of the three edges that make up that patch. ThIS“
algorithm is quite efficient in a sequential code, but is not as %
appropriate for a parallel code where the three edges of both & ]
the source and testing patch (corresponding to the row andg 5,1 %7
column indexes of the matrix) will not generally be located in ¢ ] 670
the same processor. The parallel version of PATCH currently — o821} o 0.1
only uses this calculation for those matrix elements that are ! 10 mber o rocecssors | C 10000
local to the processor doing the computation; introducin
an inefficiency compared to a sequential algorithm. Th
inefficiency is specific to the integration algorithm used and
can be removed, for example, by communicating partial resuji€] that use BLAS 3 (matrix—matrix) operations [23] and can
computed in one processor to the processors that need thparform at a high rate, typically 100-120 MFLOPS on a T3D
This step has not been taken at this time in the parallel PAT@rocessor. These operations perform a large amount of work
code partially due to the complexity it adds to the code. on the data that has been brought into the cache, compared
Matrix Equation Factorization and SolutionWhen the with BLAS 1 operations. However, this simple decomposition
impedance matrix is assembled, the solution is completed thyesn’t provide good load balance. It can be overcome by
a LU factorization, scaling a&2, and a forward and backwardblocking the matrix into much smalldrx & submatrices, and
substitution used to solve for a given right-hand side, scalingwsapping these in two dimensions onto the logical processor
NZ2. The choice of the LU factorization algorithm determinearray. In other words, partition
the matrix decomposition scheme used on the set of processors. A
One style of decomposition that is suitable for use with %
LINPACK [21] factorization routines is to partition the matrix A= : : (20)

60
560

407 5340 F1

Total Performance (GFLOPS)

g. 1. Performance for BSOLVE (includes factoring matrix, estimating
ndition number, and solving for one right-hand side).

Agnr-1)

Ao Av—1)0 e Ar—n -

A= : (8) where M ~ N/k, and all blocks are of sizé x k. Then,
— block A;; is assigned to process®#t(; modp, )(j modp.)- THIS
Ap,-1) is the partitioning strategy that is used by PATCH. (On the

where A; € C™*Y andm; ~ N/P. Each submatrixA; ;_3? k T :;2bh?s be((ejn four:jq tothprowdeh O?Um?;.;msdults
is then assigned to processar where P is the number etween load bajance demanding he smaflest possi

of processors. The LINPACK method involves many BLAéhe performance of the BLAS 3 operations requiring a large

. : : _yalue for k.)
1 (vector-vector) operations [22], which perform at 25 7}SaThe PATCH code uses a matrix equation solver (named

MFLOPS on the Cray T3D (150 MFLOPS peak performance . . .
: OLVE [24]) based on this decomposition. Fig. 1 shows
Th f ly on the T3D her
ese type operations perform poorly on the T3D and ot total and per processor performance for BSOLVE for the

hierarchical memory computers because the amount of w . . .
that is performed on the data brought from memory to t rgest matrix that can be solved on each size of machine.
rg{tal time scales at the same efficiency as total performance,

g?ctugttgz?ato the processor is similar in size to the amoy and is 25 min for the 30 240-size matrix on 256 processors.
Another type of decomposition is to assume that the physmalEaﬁhI dprocessor of the Tt3D (60 Mb]}/tes uiasglg 1rggcr)nory)
processorsP;; form a logical two-dimensional (2-Dy,. x Thn | old n Tr’g%mr?ry ‘1310;“43 rix piece o S|dze
array, where andj refer to the row and column index of the e largest as processors and can store a matrix
processor. Then the simplest assignment of matrix elementso{ Size 60480x 60480 and can be factored in about 100
processors in a block method is to partition the matrix n. The matrix solution algorithm is a member of a class of
problems (those that are limited only by memory requirements
Ago Aoip.—1) and not by run-time requirements) that are good candidates
. ] . for out-of-core methods. This would require storing a larger
A= : E : ) matrix equation on disk, and loading portions of the matrix into
memory for the factorization and solution steps. For an out-
of-core solution to be efficient, the work involved in loading
where A;; € C™*™ ., m; ~ N/p., and n; = N/p.. partofa problem from disk must be overlapped with the work
Submatrix A;; is then assigned to process#®;,;. This is performed in solving the problem, so that storing the matrix
an appropriate decomposition for use with LAPACK routinesn disk doesn't significantly increase the run time over what it

Ap,—10 | | Ap-1p.-1)
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TIME FOR LU FACTORIZATION
64 Bit Complex Arithmetic, Partial Pivoting

100

PATCH SCALING FOR FIXED SIZE PROBLEMS

Cray T3D

30 . !
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UNKNOWNS (1000) Fig. 4. Scalability for PATCH code for fixed size problems. The 16200

. . _unknown case was only run on 256 processors.
Fig. 2. CPU time versus number of unknowns for 64-b complex dense direct

solvers with partial pivoting for various machines (Cray T3D, T90, and C90,

Intel Paragon, and Delta). Processing elements (PE’s) used in calculation . din th lculati It
shown for parallel computers. In-core and out-of-core (OOC) results specifiéﬁze INCreases, more processors are used in the calculaton.

is clear that the matrix fill is dominant in the code, and in

PATCH SCALING FOR SCALED SIZE PROBLEMS fact, the crossover point between t6¢n?) factorization and

100 C::PTZ? >55lPES the O(n?) fill has not been reached. Also, the time involved
] 16 PEs| in the radar cross section calculation is shown to decrease as
ﬁ_—:: the number of processors is increased, as was described in the
10 Total —— "—__________ previous paragraph. It may also be observed that the matrix
//""’ solve time, alsaD(n?), parallels the fill time quite well.
g T Fig. 4 shows scalings for the fixed size problems on the
2 13 FA;;OR T3D. Each of the problems shown is run on the smallest set
F of processors needed to hold the matrix data, and then on
larger numbers. The total code time initially decreases linearly
015 sl A | ——F with the number of processors, leveling off as the amount of
//*—' communication time begins to become a larger fraction of the
0.01 S.O?; total time needed to complete the calculations.

0 2 4 6 8 10 12 14 16 18
MATRIX DIMENSION (x 1000)

Fig. 3. Scalability for PATCH code for scaled size problems. IV. FINITE-ELEMENT FORMULATIONS

. . o . Volumetric modeling by the use of an integral equation can
would be on a machine with more memory. Specialized matrifso pe used in simulations, though the available memory

equation solvers have been developed to efficiently exploit t§e -rrent or planned technology greatly limits the size of
large disk memory available on many parallel machines. Fig-p?oblems that can be modeled. Because of this limitation
shows general results for dense solvers, both in core and FP\UtmodeIing 3-D space by integral equations, finite-element
of core, for various machines. solutions of the partial differential equations that lead to sparse

Computation of ObservablesThe observables of the systems of equations are commonly used [25]. A finite-element
PATCH code, such as RCS information or near- or far-fielgodel is natural when the problem contains inhomogenous
quantities, can be easily computed once the currents on Hgterial regions that surface integral equation methods are
edges of the surface patches are known. These calculatigitfer incapable of modeling or are very costly to model. The
involve forward integrals of the currents and the freespaggoblem domain is broken into a finite-element basis function
Green’s function. Because this current is discretized, thet used to discretize the fields. The resulting linear system
integration results in a summation of field components due § equations—rather than scaling as th& storage of the
each current basis function. Since these discretized curremféM—scales asm/N where m is the average number of
are distributed over all the processors in a parallel simulatiafonzero matrix equation elements per row of the sparse linear
partial sums can be performed on the individual processoggstem. This value is dependent upon the order of the finite
followed by a global summation of these partial results to fineflement used, but is typically between 10 and 100, and is
the total sum. This calculation scales quite well since the orilydependent of the size of the mesh. For a six unknown, vector
overhead is the single global sum. edge-based tetrahedral finite element [286]is typically 16.

Total Performance:Fig. 3 shows overall code timings for Typically, the system of equations resulting from a finite
a scaled size problem. Each case involves a matrix that fillement discretization is symmetric; the nonzero structure of a
the same fraction of each processor's memory. As the probleepresentative example is shown in Fig. 5(a). A symmetric fac-
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TABLE 1l
SCALING OF TYPICAL FACTORIZATION
FINITE-ELEMENT MATRIX SOLUTION ALGORITHMS
PROBLEM SIZE

MEMORY N LI | voL

(Mbytes) 10° 10¢ 5]

128 30 8 2.0

256 50 16 3.3

512 82 32 5.5

1024 135 64 9.0

@ (b)

8,192 600 512 40

Fig. 5. Nonzero matrix structure of typical finite-element simulation. (a) 32,768 1627 | 2.048 | 108
Original structure. (b) Structure after reordering to minimize bandwidth. 31072 2410 | 8192 | 294

torization of this system (Cholesky factorization) leads to [27]
the physical geometry (curvature, edges, points) and the local

A —LDLT nature of the fields.

—_LDY2pV2LT Theoretically, the system in (12) is not generally positive

T definite, being symmetric indefinite, and a Cholesky factor-

=LL (11) ization in this case is numerically unstable. For the practical

i o . o solution of most problems, this has not been found to be a
where the diagonal matrix is specifically shown distributeflg,e Methods that preserve the symmetric sparsity, and allow
symmetrically between the symmetric factdisan important .y qting to produce more stable algorithms can be used [28].
consideration when symmetrically applying an incomplete grom Taple 11 it is seen that even though the storage for

Cholesky preconditioner in iterative methods. The factoriz%e finite-element method is linear i, the fill-in due to

tion results in nonzero elements Inwhere nonzeros exist in yhe se of factorization algorithms causes the storage to grow
A, as well as fill-in, or new nonzero entries generated during, 1.4 | inear storage can be maintained using an iterative
the factorization. Fill-in requires additional storage oras go|ytion, Sparse iterative algorithms for systems resulting
well as additional time to complete the factorization. To redugg, , electromagnetic simulations recursively construct Krylov
the amount of fill-in, the system is reordered by applying & pspace basis vectors that are used to iteratively improve

permutation the solution to the linear system. The iterates are found from
(PAPT)PX = PB (12) minimizing a norm of the residual
r=Ax-b (14)

where the permutation matri satisfiesPPT =1L In (12),

PAPT remains symmetric, and the forward and backwa®¥ each step of the algorithm. (A single solution vector for
substitution phases become a single excitation is shown.) Since the system is complex-

valued indefinite, methods appropriate for this class of system
LY =PB such as bi-conjugate gradient, generalized minimal residual,
iT7 -y and the quasi-minimal residual algorithm are applied [30].
T They all require a matrix—vector multiply, and a set of vector
X=pP"2 (13) inner products for the calculation. The iterative algorithms
. require the storage of the matrix and a few vectors of length
T
Where_ L S the Cholesky_ factor .O?AP - For a Sparse nr \when only the matrix and a few vectors need to be stored,
factorization, the permutation matrix is chosen to minimize trl?roblems of very large size can be handled, if the convergence
amo“”? (.)f f_iII-in_ggnerateq. _Since there arkpossibilities for rate is controlled. The number of iteratio'ns (with a sparse
p tot_m|r|1|m.|zg f_|||-|tr_1, hetl;]nstlc nlethods ariu.sedtrt]o ac.h|_eve Ratrix-dense vector multiply accounting for over 90% of the
practical minimization, the most common being the MINMUY, o 5 aach step of the iterative algorithm) determines the
degree algorithm [28]. Fig. 5(b) shows the nonzero Structure o +o solution
of the representative system after reordering for a CanonicalBecause the matrix-vector multiply dominates the Krylov

scittglnnﬁ f.’r?blem'l. data f bl . h . iterative methods, the algorithmic scaling is found from this
able 11 ISts scaling dala Tor problem Siz€ When USINg gyeration, A single sparse matrix-dense vector multiply re-
Cholesky factorization with the minimum degree reorderin uires mN operations and, if there aré total iterations
algorithm uged 10 minimize storage. Ba;ed on the compuy rquired for convergence, the number of floating point op-
storage available, the number of edges in a edge-base_d e8tions needed ig«mN. A typical solution of the system
hedral mesh [18] along with the number of nonzeros in ﬂb% equations, without the application of a preconditioner,

factor L [29], and the volume that can be modeled is show ay require a number of iteratiols= v/N, producing the
The volume is based on the use of 15000 tetrahedra %Pehuential algorithm scaling ’

cubic wavelength, corresponding to approximately 25 edges
per linear wavelength. This number can vary depending on mN>/? (15)
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for the solution of a single right-hand side. The direct fagrocessors of the computer. As in the dense MoM solution, the
torization algorithm scales am’N [28, p. 104]; therefore, pieces are distributed in a manner that allows for an efficient
the factorization methods—when memory is sufficient to hokblution of the matrix equation system.

the fill-in entries—give considerable central processing unit The Finite-Element Mesh and the Sparse Matrix Equa-
(CPU) time savings in the solution. Further advantage is aldon:The volumetric region¥() is enclosed by a surfacéY),
gained over iterative methods when using a direct factorizia- which a finite-element discretization of a weak form of the
tion. Modern computer architectures are typically much lesgave equation is used to model the geometry and fields
efficient at performing the sparse operations required in the

sparse matrix-dense vector multiply of the iterative algorithm,ﬁ_0 /// {i (Vx H)e(V x W*) - KPu.H oW | du

as compared to operations on dense matrix systems. Curreditto i Er

direct factorization methods attempt to use block algorithms, . .

exploiting dense matrix substructure in the sparse system - ExneW ds=0. 17)
and, therefore, increasing the performance of the factorization, 1%

further improving the performance from that given by the_ o _ o . .
algorithmic scaling differences. H is the magnetic field (thé/ equation is used in this paper;

It is seen that the number of iterations directly increas@sdU@l& equation can also be writterl)/is a testing function,

the time to solution in the iterative methods. This number c4fié @sterisk denotes conjugation, akid< 7 is the tangential

be controlled to some degree by the use of preconditionif§MPoNent ofZ" on the bounding surface. In (173, and
methods that attempt to transform the matrix equation int &€ the relative permittivity and permeability, re_specnvely,
one with more favorable properties for an iterative solution. T§'d %o and 7, are free-space wave number and impedance,
control the convergence rate, the matAbshould be scaled by respectively. A set of flnlte—element basis functlons,_the tetra-
a diagonal matrix that producesesalong the diagonal. This hedr_al, ve_ctor-edge elements (Whitney elements) will be used
scaling removes the dependence on different element sizes IR &iscretize (17),

o o v e g S W) 2 3nIVA) < 1IT) 09
where A(r) are the tetrahedral shape functions and indexes
(m, n) refer to the two nodal points of each edge of the

The right-hand side vector is initially transformed, and thfemlte-element mesh. These elements will be used for both

system is then solved for the intermediate ve Mx, expansion and testing (Galerkin’s method) in the f|n|te-e_lemeqt
S i 1 1 " domain. Because of the local nature of (17), (subdomain basis
multiplying this vector byM~—* A, andM ™! in succession

at each iterative step. When the solution has converge, functions and no Green’s function involved in the integration

recovered fronk. The closerM is to L in (11), the quicker .Of the f|elds), the system of equations resulting from_the
integration only contains nonzero entries when the finite

the transformed system will converge to a solution. A comma .
" . ; N ements overlap or are contiguous at an edge. Because the
preconditioner is an incomplete Cholesky factorization [3 . - : .
esh is unstructured, containing elements of different size and

where M is chosen as a piece of the facthrin (11). It . . . .
. . .___.grientation conforming to the geometry, the resultant matrix
is computed to keep some fraction of the true factorization

elements, with the exact number and sparsity location of t guatlon will have a sparsity structure that is also unstructured.

. The sparsity structure is further altered by the form of the
elements dependent on the exact algorithm used. A usegliljlmmerfeld boundary condition applied on the surfste

form of incomplete factorization keeps the same number . . o .
P P ﬁ/hen local, symmetric absorbing conditions are applied on

elements in the incomplete factor as there areAin This T .

. ) . . the boundary [34]—entering into the calculation through the
requires three times the number of operations at each iterativé : ) L

. ) ) . -~ Surface integral in (17)—a matrix with the structure, shown
step; therefore the time to solution will be decreased if the

number of iterations is lessened by two-thirds when applving Fig. 5(a), results. It is seen that the diagonal is entirely
: - y ppy%’led, corresponding to the self terms in the volume integral
this preconditioner.

When the right-hand side consists of a number of vell (17), with them nonzero entries scattered along the row (or

. ﬁolumn) of the symmetric matrix. The location of these entries
tors, newly developed block methods can be applied to t ecom letely dependent upon the ordering of the edges of the
system to use the additional right-hand sides to improve tb b y dep P 9 9

S

Strahedral elements used in the discretization. If a different
convergence rate [32], [33].

shape or order of the elements are used, the nonzero structure
- will differ slightly from the one shown. When an integral
A. Scalability on Parallel Computers equation method is used to truncate the mesh [35], [36], a

In a finite-element algorithm, the resultant sparse systetense block of elements will appear in the lower right of

of equations is stored within a data structure that holds ortlye system (when the edges of the finite-element mesh on
the nonzero entries of the sparse system. This sparse systieenboundary are ordered last), as shown in Fig. 6(a). The
must ultimately be distributed over the parallel computeiptegral equation approach to truncating the mesh uses the
requiring special algorithms to either break the original finitBnite-element facets on the boundary as source fields in an
element mesh up into specially formed contiguous piecéastegral equation, resulting in a formulation for this piece of the
or by distributing up the matrix entries themselves onto thelculation similar to that in Section Ill, and with an amount

M~ 'AM~}(Mx) = M~ 1D, (16)
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be solved by either direct factorization or iterative means as
outlined in Section lll. The intermediate calculatiBfiX = C
is the sparse system of equations to be solved, produXing

The solution of this sparse system on a parallel computer
requires it to be distributed. Traditionally, the dependence
between mesh data and the resultant sparse matrix data is
exploited in the development of mesh-partitioning algorithms
[39]-[42], [55]. These algorithms break the physical mesh
or its graph into contiguous pieces that are then read into
(b) each processor of a distributed memory machine. The mesh
Fig. 6. (a) Nonzero matrix sparsity structure for system with dense surfaée decomposed such that the pieces have roughly the same
integral-equation boundary condition applied. (b) Surface of revolution imumber of finite elements, and to some measure, each piece has
tegral gg“t"’r‘]“eort‘)obuon“d”a‘i;ry condition. The mesh has 5343 edges, with 93€1ﬁfnimallsurface.area. Since the matrix assembly routine [the
volume integral in (17)] generates nonzero matrix entries that

of storage needed for the dense matrix as a function of 1 %rrespond to the direct interconnection of finite elements, the
rag . . ) ésh partitioning algorithm attempts to create a load balance
electrical surface area tabulated in Section Il. To circumvep

the larae dense storace needed with this apolication of athe sparse system of equations. Processor communications
9 a9 AP in;the algorithm that solves the sparse system are limited by
global boundary condition, a surface of revolution can beused ™ . . ~. " . .
i e minimization of the surface area of each mesh piece.
to truncate the mesh [37], [38], using a set of global basis

. ; ; . . . Mesh-partitioning algorithms are generally divided into
functions to discretize the integral equation on this surface. .. S . e
multilevel spectral partitioning, geometric partitioning, and

This results in a system similar to that in Fig. 6(b) c:Om"’“mnlghultilevel graph partitioning. Spectral partitioning methods

very small diagonal blocks due to the orthogonal gIOb’%10], [41] create eigenvectors associated with the sparse

basis functions along the su_rface OT revolutlon_ truncap atrix, and use this information to recursively break the mesh
the mesh, as well as a matrix coupling the basis function : . -
. ; ; . - tito roughly equal pieces. They require the mesh connectivity
in the integral-equation solution to the finite-element basis ; . . L

ngormatlon as input, and return lists of finite elements for each

function on the surface. These coupling terms lead to bande ocessor. Geometric partitioning [39] is an intuitive procedure

thin rectr_:mgular matrices symmgtrlc about the_ dlagone_ll ﬁ?at divides the finite-element mesh into pieces based on the
the matrix. Other forms of the integral equation solution

. X . : . metric (n 2 i inite-
as outlined in Section lll, can also be used to d|scret|zqeeo etric (nodex, y, » coordinates) of the finite-element

the integral equation modeling fields on the mesh boundameSh' This algorithm requires the mesh connectivity as well

r . . X -
. . i . ds the node spatial coordinates and returns lists of finite
leading to slight variations of the matrix systems shown in o

elements for each processor. Graph partitioning [42] operates

l.l:-I-um w o ll:ll’.llf.'-ll

i w1

Fig. 6. o L
. - on the graph of the finite-element mesh (mesh connectivity

The systems graphically represented in Fig. 6 generally hav ; . .
the form information) to collapse (or coarsen) vertices and edges into

a smaller graph. This smaller graph is partitioned into pieces,

[KT C} {H} = {0} (19) and then uncoarsened and refined for the final partitions of

chZ]|1 v finite elements for the parallel processors. The input and
whereK is the sparse, symmetric finite-element matrix, founautput is identical to spectral methods. Multilevel algorithms
from the volume integral in (17X can be termed the couplingoperate by performing multiple stages of the partitioning
matrix that represents interactions between the finite elemesimultaneously, accelerating the algorithm. Most of these
at the boundary and the integral equation basis functions, algorithms and their offshoots perform similarly in practice,
Z represents the integral equation, MoM matrix entries. Tiwth the spectral and graph partitioning algorithms being
symbol 1 indicates the adjoint of a matriH is the vector of simpler to use since they do not need geometry information.
magnetic field coefficients for each finite element, &mdpre- An alternative to these mesh-partitioning algorithms is a
sents the equivalent current basis functions on the boundarywgthod that divides the matrix entries directly, without
the mesh. For a scattering problem formulation, the incidedperating on the finite-element mesh. This will be examined
field couples only to the integral equation boundary, and iis Section IV-A.
represented a¥. For radiation problems th@ and'V vectors Different decompositions are used depending on whether di-
are interchanged since the impressed source is modeled inrgw factorization or iterative methods are used in the solution.
mesh. Differing formulations lead to variations in (19), but thBecompositions for iterative solutions, as well as the iterative
general algebraic nature is preserved. To exploit the spargitgthods themselves have shown greater ease in parallelization
of K in (19), the system is solved in two steps by initiallythan direct factorization methods. Both approaches will now
substitutinglH = —K~!CI from the first equation in (19) be considered.
into the second, producing Direct Sparse Factorization Method®Direct factorization

(Z - CTK—lc)I V. (20) methods require a sequence _of_ four steps; r_eorderin_g o_f the

sparse system to minimize fill-in, a symbolic factorization

This system’s size is on the order of the number of basitage to determine the structure and storagk of (13), the
functions in the integral-equation model, is dense, and caomeric factorization producing the complex-valued entries
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of L, and the triangular forward and backward solutions. The SCALING OF SPARSE SLICE ALGORITHM
fundamental difficulty in the parallel sparse factorization is

the development of an efficient reordering algorithm that both 10000 W WRITE
minimizes the fill-in and scales well on distributed memory  140.00 COUPLING
machines while controlling the amount of communication 12000 [] Fem
necessary in the computation. The minimum degree algorithmﬂoo.oo_. B CONNECT
typically used in sequential packages is inherently nonparallel,3 B READ

proceeding sequentially in the elimination of nodes in the o 80.00
graph representing the nonzero structure of the matrix.F ec.00]
Other algorithms for reordering, as well as the following 4,40
symbolic and numeric factorization steps that depend on this ]
ordering are under study [43]. Current factorization algorithms ]
[44]-[46] can exhibit fast parallel solution times on moderately 0.0 T T T T T T f
. . T90 8 16 32 64 128 256
large sized problems, but are dependent on the relative struc- Number of Processors
ture of the mesh, whether or not the problem is 2-D or 3-D, o ) ) ) .
and the relative sparsity of the nonzero entries. For problerla '|Zétri<:cf:?l?nuc§2trlovr\;itrt:rzes %nld e?;;';gr;?jgus feéer‘gl\'%igshﬁnlgnlﬁnon
with more structure and less sparsity, higher performancepigmittivity = 4.0 at 5.0 GHz). The first column shows time for single
obtained by using these sparse factorization solvers. processor T90. Times on T90 for CONNECT and FEM have been combined.
Sparse lterative Solution Method#\ requirement of effi-
cient parallel implementations of the sparse iterative solversThe matrix decomposition code used in this example con-
introduced above is a decomposition of the matrix onto thsists of a number of subroutines; initially, the potentially large
processors that: 1) minimizes communication of the overlagresh files are read (READ), then the connectivity structure
ping vector pieces in the parallel matrix-vector multiply obf the sparse matrix is generated and reordered (CONNECT),
the iterative algorithm; 2) reduces storage of the resultafaiiowed by the generation of the complex-valued entries of
dense vector pieces on each processor; and 3) allows for Ig@dFEM), building the connectivity structure and filling tii&
balance in storage and computation. Various parallel packagestrix (COUPLING). Finally, the individual files containing
have been written that accomplish these goals to some degteerow slabs ofi and the row slabs o€ must be written
[47], [48]. The mesh decompositions outlined previously cal disk (WRITE). For each processor that will be used in
be used and integrated with the parallel iterative algorithm the matrix equation solver, one file containing the appropriate
solve the system. parts of both theék and C matrices is written. Fig. 7 shows
Alternatively, a relatively simple approach that divides ththe performance of these routines over varying numbers of
sparse matrix entries among the distributed memory procesecessors for a problem simulating scattering from a dielectric
sors can be employed [49]. The matrix is decomposed d¢9linder modeled by 43791 edges. The parallel times on a
this implementation into row slabs of the sparse reorder@tay T3D are compared against the code running sequentially
system. The reordering is chosen to minimize and equaliga one processor of a Cray T90. As mentioned above, the
the bandwidth of each row over the system [17], [18] [agordering algorithm and the algorithm generating the matrix
shown in Fig. 5(b)] since the amount of data communicated gonnectivity are fundamentally sequential. These routines do
the matrix—vector multiply will depend upon the combinatiomot show high efficiency when using multiple processors—the
of equalizing the row bandwidth as well, as minimizing ittime for this algorithm is basically flat—whereas for routines
A row slab matrix decomposition strikes a balance betwegmat can be parallelized (FEM, COUPLING, and WRITE),
near perfect data and computational load balance among tfoeibling the number of processors reduces the amount of time
processors, minimal but not perfectly optimal communicatidny a factor of approximately two. The time for reading the
of data in the matrix—vector multiply operation, and scalabilitshesh is bound by 1/O rates of the computer, and the time for
of simulating larger sized problems on greater numbers wfiting the decomposed matrix data varies slightly for the 128
processors. Since the right-hand side vectors in the parabeld 256 processor cases due to other users also doing 1/0 on
sparse matrix equatiodd(X = C) are the columns o, these the system. As will be shown in the next result, a key point
columns are distributed as required by the row distribution of this approach to matrix decomposition is that the total time
K. When setting up the row-slab decompositid€,is split needed (less than 100 s on eight processors) is substantially
by attempting to equalize the number of nonzeros in eafdss than the time needed for solving the linear system, and
processor’s portion oK (composed of consecutive rows ofany inefficiencies here are less important than those in the
K). The rows in a given processor’s portion Kf determines iterative solver.
the rows ofC that processor will contain. As an example, if the In this example, quasi-minimum residual algorithm [52] is
total number of nonzeros iK is nz, a loop over the rows of used to solve the sparse system of equati = C. With
K will be executed, counting the number of nonzero¥oin the row-slab decomposition used, the machine is logically
the rows examined. When this number becomes approximatetnsidered to be a linear array of processors, with each slab
nz/P (whereP is the number of processors that will be usedf data residing in one of the processors. Central components
by the matrix equation solver), the set of rowsofor a given of the quasiminimum residual algorithm that are affected by
processor has been determined, as has the set of ro@Ws of the use of a distributed memory machine are the parallel
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COMMUNICATION FROM ITERATIVE SOLUTION SCALING FOR FIXED SIZE PROBLEMS
/PROCESSOR TOLEFT 140
\ \ N —m— 43791
@ S 120 z —8— 166489
§l 'Qa% l X = \ \ \ ]\ —a— 271158
COLUMNS D\ LOCAL PROCESSOR ROWS z 100 —o— 417350
LOCAL PROCESSOR ROWS E ] \ \ —1— 579993
\COMMUNICATION FROM E % \ \ \
PROCESSOR TO RIGHT E 60 ] \ \
:3‘ <
Fig. 8. Local sparse matrix-dense vector multiply graphically displayed. 3 40: \\
sparse matrix-dense vector multiply, and dot products and 207 SS——
norm calculations that need vector data distributed over the o —u
. . . . AL A P AL R WL — 1
machine. The dominant component is the matrix-vector mul- 0 64 128 192 256

Number of Processors

tiply, accounting for approximately 80% of the time required

in a solution. The paraIIeI sparse matrix-dense vector multip'l_kiﬂ- 9. Time of convergence for five different problems. The time shown is
. L . . . the total execution time for the solver on different numbers of processors. The
involves multiplying theK matrix that is distributed acrossc matrix had 116 columns in each case.

the processors in row slabs, each containing a roughly equal

number of nonzero elements, and a dense vestothat

. . . 45
is also distributed over the processors, to form a product

[
vector y, distributed as isx (Fig. 8). Since theK matrix ~_*7 - ae7e /!
has been reordered for minimum bandwidth, the minimum  ss] e 160489 /
and maximum column indexes of the slab are known. If § 305 A 271188 »

the piece of the dense vectar local to this processor has
indexes within this extent of column indexes, the multiply

4 579993 // /
may be done locally and the resultant veggowill be purely / /i

n
w

ntage of Comm

n
o
i

local. In general, the local row indexes of the dense vector § 4 ] /'/
x do not contain the range of column indexes; therefore, ac ]
communication step is required to obtain the portions of the 105 -
multiply vector x required by the column indexes of th€ 5 ” - o - -
matrix. This communication step only requires data from a few Number of Processors
processors tp the left gnd right. The exact number of ProCeSSOIS 15, percentage of communication versus number of processors for
communicating data is dependent on the row bandwidth &?rallel matrix—vector multiply, for four different size (number of edges)
the local piece ofK, and the number of processors beingeshes of dielectric cylinder.
used. In the simulations considered, the number of processors
communicating data is typically one or two in each directioaof communication is a function of how finely thK matrix
on scaled problems. is decomposed, since its maximum row bandwidth after re-
Shown in Fig. 9 are plots of time to convergence on diffeerdering is not a function of the number of processors used in
ent numbers of processors for five different problems (fixade decomposition. If the maximum row bandwidthrisand
size problems). The number of unknowns in the finite-elemesach processor in a given decomposition has approximately
mesh and the number of columns ©f are indicated on the rows of K, then most processors will require one processor in
plots. The quasiminimum residual algorithm was stopped wheach direction for communication. If the number of processors
the normalized residual was reduced three orders of magnitugked for the distribution oK is doubled, each processor will
for each column ofC. With an initial guess being the zerohave approximately./2 rows of K. Since the row bandwidth
vector, this results in a normalized residual of 0.1%, a valumesn’t change, each processor will now require communi-
that is sufficient for this scattering problem. Given a fixedation in each direction from two processors. But since the
communication percentage and a fixed rate for local workumber of floating point operations required hasn't changed,
doubling the number of processors for a given problem woulde communication percentage should roughly double. This
halve the total solution time. The curves in Fig. 9 do natan be seen in Fig. 10, which shows communication percent-
drop linearly at this rate for increasing numbers of processoegie versus number of processors, for four problem sizes.
because there is a decrease in the amount of work per processadihe row-slab decomposition is a simple means for breaking
while the amount of data communicated increases, causing the sparse matrix equation among the processors and while
curves to level off. the mesh-decomposition algorithms outlined above can also
Another factor in the performance of the parallel mabe used, differences between the approaches in time to so-
trix—vector multiply is the percentage of communication. Thikition on a parallel computer were found to be small for
is related to the number of processors to the left and right thether approach. Two alternative mesh-decomposition schemes
each processor must communicate. It is clear that runnindhave been compared to the matrix-partitioning algorithm,
fixed size problem on an increasing number of processors wibntrasting data load balance, communication load balance,
generate a growing amount of communication. The amouthe total amount of communication, and the performance of
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the local processor matrix—vector performance resulting from V. DISCUSSION

the specific decomposition used. The first is an algorithm g paper presented an overview of solutions to surface-
termed JOSTLE [55] that uses various optimization methods;iga

i < ral equation and volumetric finite-element methods on
equalize the mesh partitions among the processors. The Se%lﬁﬁential and distributed memory computer architectures.

is a multilevel graph partitioning scheme termed METIS [4234th the sequential algorithmic scalability as well as scala-

Among the three approaches, no discernible difference W&y on parallel computer systems were presented for current

found in data and communication load balance, and in tagmnyter technology, with extrapolation to next generation
performance of the local processor matrix-vector performanggchnologies. A broad set of references are given. When a
A difference was found in the total amount of communicatiopitorm resource locator (URL) is also referenced, it points

needed in the solution of the sparse system of equatiofssoftware which was freely available at the time this paper
When normalizing the total amount of communication ig,55 \written.

the matrix partition algorithm to 1.0, the JOSTLE algorithm
reduced the amount of communication to 0.26, and the METIS
algorithm reduced it to 0.22. From Fig. 10, it is noted that the ACKNOWLEDGMENT

percentage of communication time in the complete solver iSTne authors would like to thank C. Zuffada and V. Jamnejad
8% for scaled-sized problems (those that fit into the minimg} ihe Jet Propulsion Laboratory, Pasadena, CA, for their

number of processors needed to solve the problem). It is thigriputions to the sequential version of the finite-element
fraction of the total CPU time that can be reduced by thgware discussed in Section IV-A.
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