
544 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

Scalable Solutions to Integral-Equation
and Finite-Element Simulations

Tom Cwik, Senior Member, IEEE, Daniel S. Katz,Member, IEEE, and Jean Patterson

Invited Paper

Abstract—When developing numerical methods, or applying
them to the simulation and design of engineering components,
it inevitably becomes necessary to examine the scaling of the
method with a problem’s electrical size. The scaling results from
the original mathematical development; for example, a dense
system of equations in the solution of integral equations, as well as
the specific numerical implementation. Scaling of the numerical
implementation depends upon many factors; for example, direct
or iterative methods for solution of the linear system, as well as
the computer architecture used in the simulation. In this paper,
scalability will be divided into two components—scalability of the
numerical algorithm specifically on parallel computer systems
and algorithm or sequential scalability. The sequential imple-
mentation and scaling is initially presented, with the parallel
implementation following. This progression is meant to illustrate
the differences in using current parallel platforms and sequential
machines and the resulting savings. Time to solution (wall-clock
time) for differing problem sizes are the key parameters plotted
or tabulated. Sequential and parallel scalability of time harmonic
surface integral equation forms and the finite-element solution to
the partial differential equations are considered in detail.

Index Terms—Finite-element methods, integral equations.

I. INTRODUCTION

T HE application of advanced computer architecture and
software to a broad range of electromagnetic problems

has allowed more accurate simulations of electrically larger
and more complex components and systems than previously
available. Computational algorithms are used in the design
and analysis of antenna components and arrays, waveguide
components, semiconductor devices, and in the prediction
of radar scattering from aircraft, sea surface or vegetation,
and atmospheric particles, among many other applications. A
scattering algorithm, for example, may be used in conjunction
with measured data to accurately reconstruct geophysical data.
When used in design, the goal of a numerical simulation
is to limit the number of trial fabrication and measurement
iterations needed. The algorithms are used over a wide range of
frequencies, materials and shapes, and can be developed to be

Manuscript received May 21, 1996; revised October 8, 1996. This work was
supported by the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.
D. S. Katz was supported by the Parallel Application Technology Program
at Cray Research. The Cray Supercomputer used in this investigation was
provided by funding from the NASA Offices of Mission to Planet Earth,
Aeronautics, and Space Science.

The authors are with the Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91109 USA.

Publisher Item Identifier S 0018-926X(97)02303-X.

specific to a single geometry and application, or more generally
applied to a class of problems. The algorithms are numerical
solutions to a mathematical model developed in the time or
frequency domain and can be based on the integral equation
or partial differential equation form of Maxwell’s equations.
A survey of the many forms of mathematical modeling and
numerical solution can be found in [1], [2]. The goal of
this paper is to examine the scalability of certain numerical
solutions both generally as sequential algorithms, and then,
specifically, as parallel algorithms using distributed memory
computers. Parallel computers are evolving, surpassing tradi-
tional computer architectures by offering the largest memories
and fastest computational rates to the user, and they will
continue to evolve for several more generations in the near
future [3].

This paper provides an overview of solutions to Maxwell’s
equations implicitly defined through systems of linear equa-
tions. Sequential and parallel scalability of time-harmonic
surface integral-equation forms and the finite-element solution
to the partial differential equations are considered. More
general scalability of other sequential algorithms can be found
in [4]. Initially, in Section II, a short review of the scalability
of parallel computers is presented. In Sections III and IV,
respectively, specific implementations of the MoM solution to
integral-equation modeling and a finite-element solution will
be discussed. The scalability of sequential solutions and related
reduced memory methods will be considered, followed by an
examination of parallel scalability and computer performance
for these algorithms. The size of problems capable of being
examined with current computer architectures will then be
listed, with scalings to larger size problems also presented.

II. SCALABILITY OF PARALLEL COMPUTERS

Parallel algorithm scalability is examined differently from
sequential algorithm scalability or, more precisely, scalability
on shared memory (common address space) machines with
no interprocessor communication overhead. Since a parallel
computer is an ensemble of processors and memory linked by
high-performance communication networks, calculations that
were performed on a single processor must be broken into
pieces and spread over all processors in use. At intermediate
points in the calculation, data needed in the next stage of the
calculation must be communicated to other processors.

The central consideration in using a parallel computer is
to decompose the discretized problem among processors so

0018–926X/97$10.00 1997 IEEE

CWIK et al.: SCALABLE SOLUTIONS TO INTEGRAL-EQUATION AND FINITE-ELEMENT SIMULATIONS 545

that the storage and computational load are balanced, and
the amount of communication between processors is minimal
[5], [6]. When this is not handled properly, efficiency is
lower than 100%, where 100% is the machine performance
when all processors are performing independent calculations
and no time is used for communication. If the problem is
decomposed poorly, some processors will work while others
stand idle, thereby lowering machine efficiency. Similarly, if
calculations are load balanced but processors must wait to
communicate data, the efficiency is lowered. Scalability and
efficiency are defined to quantify the parallel performance of a
machine. Scalability (also termed speedup) is the ratio of time
to complete calculations sequentially on a single processor to
that on processors

(1)

The efficiency is then the ratio of scalability to the number
of processors

(2)

If an algorithm issues no communication calls, and there is no
component of the calculation that is sequential and, therefore,
redundantly repeated at each processor, the scalability is equal
to the number of processors and the efficiency is 100%.
The scalability, as defined, must be further clarified if it is
to be meaningful since the amount of storage, i.e., problem
size, has not been included in the definition. Two regimes
can be considered—fixed problem size and fixed grain size.
The first, fixed problem size, refers to a problem that is small
enough to fit into one or a few processors and is successively
spread over a larger sized machine. The amount of data and
calculation in each processor will decrease and the amount of
communication will increase. The efficiency must, therefore,
successively decrease, reaching a point where CPU time is
communication bound. The second, fixed grain size problems,
refers to a problem size that is scaled to fill all the memory of
the machine in use. The amount of data and calculation in each
processor will be constant, and in general, much greater than
the required amount of communication. Efficiency will remain
high as successively larger problems are solved. Fixed grain
problems ideally exhibit scalability that is a key motivation
for parallel processing; successively larger problems can be
mapped onto successively larger machines without a loss of
efficiency.

When developing numerical methods for electromagnetics,
or applying them to the simulation and design of engineering
components, it inevitably becomes necessary to examine the
scaling of the method with a problem’s electrical size. The
scaling results from the original mathematical development;
for example, a dense system of equations in the solution of
integral equations, as well as the specific numerical imple-
mentation. Scaling of the numerical implementation depends
upon many factors; for example, direct or iterative methods
for solution of the linear system, as well as the computer
architecture used in the simulation. In the rest of this paper,
scalability will be divided into two components—algorithmic

scalability and scalability of the numerical algorithm specif-
ically on parallel computer systems. Algorithmic scalability
refers to the amount of computer memory and time needed to
complete an accurate solution as a function of the electrical
size of the problem. Scalability on a parallel computer system
refers to the ability of an algorithm to achieve performance
proportional to the number of processors being used as out-
lined above. The sequential implementation and scaling is
initially presented with the parallel implementation following.
This progression is meant to illustrate the differences in using
current parallel platforms versus sequential machines, and the
resulting savings. Clearly, different mathematical formulations
can lead to alternate numerical implementations and different
scalings. The objective of numerical modeling is to provide
an accurate simulation of the measurable quantities in an
amount of time that is useful for engineering design. With
this objective, time to solution (wall-clock time) for differing
problem sizes is the key parameter plotted or tabulated.

III. I NTEGRAL EQUATION FORMULATIONS

The method of moments (MoM) is a traditional algorithm
used for the solution of a surface integral equation [7], [8]. This
technique can be applied to impenetrable and homogenous
objects, objects where an impedance boundary condition accu-
rately models inhomogenous materials or coatings, and those
inhomogenous objects that allow the use of Green’s functions
specific to the geometry. A dense system of equations results
from discretizing the surface basis functions in a piecewise
continuous set, with this system being solved in various ways.
The components of MoM solutions that affect the algorithmic
scalability are the matrix fill, and matrix solution. A system
of equations

(3)

results from the MoM, where generally is a nonsymmetric
complex-valued square matrix, and and are complex-
valued rectangular matrices when multiple excitations and
solution vectors are present. The solution of (3) is most
conveniently found by an LU factorization

(4)

where and are lower and upper triangular factors of.
The solution for is computed by successive forward and
back substitutions to solve the triangular systems

(5)

Because the system in (3) is not generally positive definite,
rows of are permuted in the factorization, leading to a stable
algorithm [9]. Table I is a listing of computer storage and time
scalings for a range of problem sizes when using standard LU
decomposition factorization and readily available forward and
backward solution algorithms [10]. The table is divided along
columns into problem size, factorization, and solution compo-
nents. The first column fixes the memory size of the machine
being used; the number of unknowns and surface area modeled
(assuming 200 unknowns/) based on this memory size are

546 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

TABLE I
SCALING OF METHOD OF MOMENTS MATRIX FACTORIZATION AND SOLUTION ALGORITHMS

in the next columns. The factor and solve times are based
on the performance of three classes of machine, current high-
end workstation (0.1 Gigaflops), current supercomputer (10
Gigaflops), and next generation computer (1000 Gigaflops).
Similarly, the rows are divided into the top four which
would typically correspond to current generation workstations,
and the lower four that correspond to supercomputer class
machines. Due to the nature of the dense matrix data structures
[10] in the factorization algorithms, this component of the
calculation can be highly efficient on general computers. A
value of 80% efficiency of the peak machine performance
is used for the time scalings. The backward and forward
solution algorithms though operate sequentially on triangular
matrix systems, resulting in reduced performance, and a 50%
efficiency is used in these columns. This performance will
increase when many excitations (right-hand sides) are involved
in the calculation, resulting in performance closer to peak.

The time for factorization, scaling as , can limit the time
of the calculation for large problems, even if the matrix can
be assembled and stored. An alternative to direct factorization
methods is the use of iterative solvers of the dense system
[11], [12]. These methods are even more useful if multiple
right-hand sides are present, since the iterative solvers exploit
information in these vectors [11]. If the convergence rate can
be controlled and the number of iterations required to complete
a solution are limited, the solution time can be reduced as
compared to that of the direct factorization methods.

The direct limitation of integral-equation methods is the
memory needed to store the dense matrix. Larger problems
can only be solved by circumventing this bottleneck. One
approach to this problem is to use higher order parametric
basis functions which reduce the number of unknowns needed
to model sections of the surface [13]. However, it is clear
that the growth in memory required for storage of the dense
complex impedance matrix (), cannot be overcome by only
slightly reducing the size of or by increasing the number
of computer processors applied to the problem. Alternative
methods are, thus, desirable.

One such method uses special types of basis functions to
produce a sparse impedance matrix [14], reducing the storage
from the to where is a constant independent
of . The resulting sparse system can be solved using the
methods described in latter sections of this paper. Other
classes of methods for generating and solving the impedance

matrix while reducing storage are summarized in [15], while
another is the fast multipole method [16], [17]. This approach
decomposes the impedance matrix in a manner that also
reduces the needed storage to . The fast multipole method
has been parallelized in [18], where it is suggested that an Intel
Paragon system with 512 nodes each containing 32 Mbytes of
memory could solve a problem with 250 000 basis functions.

A. Scalability on Parallel Computers

To specifically examine parallel scalability, the electric-field
integral-equation model developed in the PATCH code [19],
[20] is used. This code uses a triangularly faceted surface
model of the object being analyzed, and builds a complex
dense matrix system [identical to that given in (3)]

(6)

where

G (7)

and and are indices on the edges of the surface facets,
G is the Green’s function for an unbounded homogeneous
space, and are arbitrary source and observation points,
and are current testing and expansion functions.
The impedance matrix () is factored by means of an LU
factorization, and for each vector a forward and backward
substitution is performed to obtain, the unknown currents on
the edges of the surface facets. It is then a simple matter to
compute radar cross section (RCS) or other field quantities by a
forward integral. The elements of the PATCH code considered
in the parallelization are matrix fill, matrix factorization and
solution of one or many right-hand sides, and the calculation of
field quantities. The computation cost of these three elements
must be examined in relation to increasing problem size and
increasing number of processors to understand the scalability
of the PATCH code.

Matrix Equation Fill: Since the impedance matrix is a
complex dense matrix of size , where is the number of
edges used in the faceted surface of the object being modeled,
the matrix has elements, and filling this matrix scales as

. One method for reducing the amount of time spent in
this operation when using a parallel computer is to spread
the fixed number of elements to be computed over a large
number of processors. Since the amount of computation
is theoretically fixed (neglecting communication between

CWIK et al.: SCALABLE SOLUTIONS TO INTEGRAL-EQUATION AND FINITE-ELEMENT SIMULATIONS 547

processors), applying processors to this task should provide
a time reduction of . However, the computations required
by the PATCH code’s basis functions involve calculations
performed at the center of each patch that contribute to the
matrix elements associated with the three current functions
on the edges of that patch. The sequential PATCH code will
loop over the surface patches and compute partial integrals
for each of the three edges that make up that patch. This
algorithm is quite efficient in a sequential code, but is not as
appropriate for a parallel code where the three edges of both
the source and testing patch (corresponding to the row and
column indexes of the matrix) will not generally be located in
the same processor. The parallel version of PATCH currently
only uses this calculation for those matrix elements that are
local to the processor doing the computation; introducing
an inefficiency compared to a sequential algorithm. This
inefficiency is specific to the integration algorithm used and
can be removed, for example, by communicating partial results
computed in one processor to the processors that need them.
This step has not been taken at this time in the parallel PATCH
code partially due to the complexity it adds to the code.

Matrix Equation Factorization and Solution:When the
impedance matrix is assembled, the solution is completed by
a LU factorization, scaling as , and a forward and backward
substitution used to solve for a given right-hand side, scaling as

. The choice of the LU factorization algorithm determines
the matrix decomposition scheme used on the set of processors.

One style of decomposition that is suitable for use with
LINPACK [21] factorization routines is to partition the matrix

... (8)

where and . Each submatrix
is then assigned to processor, where is the number
of processors. The LINPACK method involves many BLAS
1 (vector–vector) operations [22], which perform at 25–70
MFLOPS on the Cray T3D (150 MFLOPS peak performance.)
These type operations perform poorly on the T3D and other
hierarchical memory computers because the amount of work
that is performed on the data brought from memory to the
cache then to the processor is similar in size to the amount
of that data.

Another type of decomposition is to assume that the physical
processors, form a logical two-dimensional (2-D)
array, where and refer to the row and column index of the
processor. Then the simplest assignment of matrix elements to
processors in a block method is to partition the matrix

...
...

... (9)

where , and .
Submatrix is then assigned to processor . This is
an appropriate decomposition for use with LAPACK routines

Fig. 1. Performance for BSOLVE (includes factoring matrix, estimating
condition number, and solving for one right-hand side).

[10] that use BLAS 3 (matrix–matrix) operations [23] and can
perform at a high rate, typically 100–120 MFLOPS on a T3D
processor. These operations perform a large amount of work
on the data that has been brought into the cache, compared
with BLAS 1 operations. However, this simple decomposition
doesn’t provide good load balance. It can be overcome by
blocking the matrix into much smaller submatrices, and
wrapping these in two dimensions onto the logical processor
array. In other words, partition

...
...

... (10)

where , and all blocks are of size . Then,
block is assigned to processor . This
is the partitioning strategy that is used by PATCH. (On the
T3D, has been found to provide optimal results
between load balance demanding the smallest possibleand
the performance of the BLAS 3 operations requiring a large
value for .)

The PATCH code uses a matrix equation solver (named
BSOLVE [24]) based on this decomposition. Fig. 1 shows
the total and per processor performance for BSOLVE for the
largest matrix that can be solved on each size of machine.
Total time scales at the same efficiency as total performance,
and is 25 min for the 30 240-size matrix on 256 processors.

Each processor of the T3D (60 Mbytes usable memory)
can hold in memory a matrix piece of size 1890 1890.
The largest T3D has 1024 processors and can store a matrix
of size 60 480 60 480 and can be factored in about 100
min. The matrix solution algorithm is a member of a class of
problems (those that are limited only by memory requirements
and not by run-time requirements) that are good candidates
for out-of-core methods. This would require storing a larger
matrix equation on disk, and loading portions of the matrix into
memory for the factorization and solution steps. For an out-
of-core solution to be efficient, the work involved in loading
part of a problem from disk must be overlapped with the work
performed in solving the problem, so that storing the matrix
on disk doesn’t significantly increase the run time over what it

548 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

Fig. 2. CPU time versus number of unknowns for 64-b complex dense direct
solvers with partial pivoting for various machines (Cray T3D, T90, and C90,
Intel Paragon, and Delta). Processing elements (PE’s) used in calculation
shown for parallel computers. In-core and out-of-core (OOC) results specified.

Fig. 3. Scalability for PATCH code for scaled size problems.

would be on a machine with more memory. Specialized matrix
equation solvers have been developed to efficiently exploit the
large disk memory available on many parallel machines. Fig. 2
shows general results for dense solvers, both in core and out
of core, for various machines.

Computation of Observables:The observables of the
PATCH code, such as RCS information or near- or far-field
quantities, can be easily computed once the currents on the
edges of the surface patches are known. These calculations
involve forward integrals of the currents and the freespace
Green’s function. Because this current is discretized, the
integration results in a summation of field components due to
each current basis function. Since these discretized currents
are distributed over all the processors in a parallel simulation,
partial sums can be performed on the individual processors,
followed by a global summation of these partial results to find
the total sum. This calculation scales quite well since the only
overhead is the single global sum.

Total Performance:Fig. 3 shows overall code timings for
a scaled size problem. Each case involves a matrix that fills
the same fraction of each processor’s memory. As the problem

Fig. 4. Scalability for PATCH code for fixed size problems. The 16 200
unknown case was only run on 256 processors.

size increases, more processors are used in the calculation. It
is clear that the matrix fill is dominant in the code, and in
fact, the crossover point between the factorization and
the fill has not been reached. Also, the time involved
in the radar cross section calculation is shown to decrease as
the number of processors is increased, as was described in the
previous paragraph. It may also be observed that the matrix
solve time, also , parallels the fill time quite well.

Fig. 4 shows scalings for the fixed size problems on the
T3D. Each of the problems shown is run on the smallest set
of processors needed to hold the matrix data, and then on
larger numbers. The total code time initially decreases linearly
with the number of processors, leveling off as the amount of
communication time begins to become a larger fraction of the
total time needed to complete the calculations.

IV. FINITE-ELEMENT FORMULATIONS

Volumetric modeling by the use of an integral equation can
also be used in simulations, though the available memory
of current or planned technology greatly limits the size of
problems that can be modeled. Because of this limitation
in modeling 3-D space by integral equations, finite-element
solutions of the partial differential equations that lead to sparse
systems of equations are commonly used [25]. A finite-element
model is natural when the problem contains inhomogenous
material regions that surface integral equation methods are
either incapable of modeling or are very costly to model. The
problem domain is broken into a finite-element basis function
set used to discretize the fields. The resulting linear system
of equations—rather than scaling as the storage of the
MoM—scales as where is the average number of
nonzero matrix equation elements per row of the sparse linear
system. This value is dependent upon the order of the finite
element used, but is typically between 10 and 100, and is
independent of the size of the mesh. For a six unknown, vector
edge-based tetrahedral finite element [26],is typically 16.

Typically, the system of equations resulting from a finite
element discretization is symmetric; the nonzero structure of a
representative example is shown in Fig. 5(a). A symmetric fac-

CWIK et al.: SCALABLE SOLUTIONS TO INTEGRAL-EQUATION AND FINITE-ELEMENT SIMULATIONS 549

(a) (b)

Fig. 5. Nonzero matrix structure of typical finite-element simulation. (a)
Original structure. (b) Structure after reordering to minimize bandwidth.

torization of this system (Cholesky factorization) leads to [27]

(11)

where the diagonal matrix is specifically shown distributed
symmetrically between the symmetric factors, an important
consideration when symmetrically applying an incomplete
Cholesky preconditioner in iterative methods. The factoriza-
tion results in nonzero elements inwhere nonzeros exist in

, as well as fill-in, or new nonzero entries generated during
the factorization. Fill-in requires additional storage for, as
well as additional time to complete the factorization. To reduce
the amount of fill-in, the system is reordered by applying a
permutation

(12)

where the permutation matrix satisfies . In (12),
remains symmetric, and the forward and backward

substitution phases become

(13)

where is the Cholesky factor of . For a sparse
factorization, the permutation matrix is chosen to minimize the
amount of fill-in generated. Since there arepossibilities for

to minimize fill-in, heuristic methods are used to achieve a
practical minimization, the most common being the minimum
degree algorithm [28]. Fig. 5(b) shows the nonzero structure
of the representative system after reordering for a canonical
scattering problem.

Table II lists scaling data for problem size when using a
Cholesky factorization with the minimum degree reordering
algorithm used to minimize storage. Based on the computer
storage available, the number of edges in a edge-based tetra-
hedral mesh [18] along with the number of nonzeros in the
factor [29], and the volume that can be modeled is shown.
The volume is based on the use of 15 000 tetrahedra per
cubic wavelength, corresponding to approximately 25 edges
per linear wavelength. This number can vary depending on

TABLE II
SCALING OF TYPICAL FACTORIZATION

FINITE-ELEMENT MATRIX SOLUTION ALGORITHMS

the physical geometry (curvature, edges, points) and the local
nature of the fields.

Theoretically, the system in (12) is not generally positive
definite, being symmetric indefinite, and a Cholesky factor-
ization in this case is numerically unstable. For the practical
solution of most problems, this has not been found to be a
issue. Methods that preserve the symmetric sparsity, and allow
pivoting to produce more stable algorithms can be used [28].

From Table II it is seen that even though the storage for
the finite-element method is linear in , the fill-in due to
the use of factorization algorithms causes the storage to grow
as . Linear storage can be maintained using an iterative
solution. Sparse iterative algorithms for systems resulting
from electromagnetic simulations recursively construct Krylov
subspace basis vectors that are used to iteratively improve
the solution to the linear system. The iterates are found from
minimizing a norm of the residual

(14)

at each step of the algorithm. (A single solution vector for
a single excitation is shown.) Since the system is complex-
valued indefinite, methods appropriate for this class of system
such as bi-conjugate gradient, generalized minimal residual,
and the quasi-minimal residual algorithm are applied [30].
They all require a matrix–vector multiply, and a set of vector
inner products for the calculation. The iterative algorithms
require the storage of the matrix and a few vectors of length

. When only the matrix and a few vectors need to be stored,
problems of very large size can be handled, if the convergence
rate is controlled. The number of iterations (with a sparse
matrix-dense vector multiply accounting for over 90% of the
time at each step of the iterative algorithm) determines the
time to solution.

Because the matrix–vector multiply dominates the Krylov
iterative methods, the algorithmic scaling is found from this
operation. A single sparse matrix-dense vector multiply re-
quires operations and, if there are total iterations
required for convergence, the number of floating point op-
erations needed is . A typical solution of the system
of equations, without the application of a preconditioner,
may require a number of iterations , producing the
sequential algorithm scaling

(15)

550 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

for the solution of a single right-hand side. The direct fac-
torization algorithm scales as [28, p. 104]; therefore,
the factorization methods—when memory is sufficient to hold
the fill-in entries—give considerable central processing unit
(CPU) time savings in the solution. Further advantage is also
gained over iterative methods when using a direct factoriza-
tion. Modern computer architectures are typically much less
efficient at performing the sparse operations required in the
sparse matrix-dense vector multiply of the iterative algorithm,
as compared to operations on dense matrix systems. Current
direct factorization methods attempt to use block algorithms,
exploiting dense matrix substructure in the sparse system
and, therefore, increasing the performance of the factorization,
further improving the performance from that given by the
algorithmic scaling differences.

It is seen that the number of iterations directly increases
the time to solution in the iterative methods. This number can
be controlled to some degree by the use of preconditioning
methods that attempt to transform the matrix equation into
one with more favorable properties for an iterative solution. To
control the convergence rate, the matrixshould be scaled by
a diagonal matrix that producesonesalong the diagonal. This
scaling removes the dependence on different element sizes in a
mesh. A preconditioner can then be symmetrically applied
to transform the system giving

(16)

The right-hand side vector is initially transformed, and the
system is then solved for the intermediate vector ,
multiplying this vector by , and in succession
at each iterative step. When the solution has converged,is
recovered from . The closer is to in (11), the quicker
the transformed system will converge to a solution. A common
preconditioner is an incomplete Cholesky factorization [31]
where is chosen as a piece of the factor in (11). It
is computed to keep some fraction of the true factorization
elements, with the exact number and sparsity location of the
elements dependent on the exact algorithm used. A useful
form of incomplete factorization keeps the same number of
elements in the incomplete factor as there are in. This
requires three times the number of operations at each iterative
step; therefore the time to solution will be decreased if the
number of iterations is lessened by two-thirds when applying
this preconditioner.

When the right-hand side consists of a number of vec-
tors, newly developed block methods can be applied to the
system to use the additional right-hand sides to improve the
convergence rate [32], [33].

A. Scalability on Parallel Computers

In a finite-element algorithm, the resultant sparse system
of equations is stored within a data structure that holds only
the nonzero entries of the sparse system. This sparse system
must ultimately be distributed over the parallel computer,
requiring special algorithms to either break the original finite
element mesh up into specially formed contiguous pieces,
or by distributing up the matrix entries themselves onto the

processors of the computer. As in the dense MoM solution, the
pieces are distributed in a manner that allows for an efficient
solution of the matrix equation system.

The Finite-Element Mesh and the Sparse Matrix Equa-
tion:The volumetric region () is enclosed by a surface (),
in which a finite-element discretization of a weak form of the
wave equation is used to model the geometry and fields

(17)

is the magnetic field (the equation is used in this paper;
a dual equation can also be written), is a testing function,
the asterisk denotes conjugation, and is the tangential
component of on the bounding surface. In (17), and

are the relative permittivity and permeability, respectively,
and and are free-space wave number and impedance,
respectively. A set of finite-element basis functions, the tetra-
hedral, vector-edge elements (Whitney elements) will be used
to discretize (17),

(18)

where are the tetrahedral shape functions and indexes
() refer to the two nodal points of each edge of the
finite-element mesh. These elements will be used for both
expansion and testing (Galerkin’s method) in the finite-element
domain. Because of the local nature of (17), (subdomain basis
functions and no Green’s function involved in the integration
of the fields), the system of equations resulting from the
integration only contains nonzero entries when the finite
elements overlap or are contiguous at an edge. Because the
mesh is unstructured, containing elements of different size and
orientation conforming to the geometry, the resultant matrix
equation will have a sparsity structure that is also unstructured.

The sparsity structure is further altered by the form of the
Sommerfeld boundary condition applied on the surface.
When local, symmetric absorbing conditions are applied on
the boundary [34]—entering into the calculation through the
surface integral in (17)—a matrix with the structure, shown
in Fig. 5(a), results. It is seen that the diagonal is entirely
filled, corresponding to the self terms in the volume integral
in (17), with the nonzero entries scattered along the row (or
column) of the symmetric matrix. The location of these entries
is completely dependent upon the ordering of the edges of the
tetrahedral elements used in the discretization. If a different
shape or order of the elements are used, the nonzero structure
will differ slightly from the one shown. When an integral
equation method is used to truncate the mesh [35], [36], a
dense block of elements will appear in the lower right of
the system (when the edges of the finite-element mesh on
the boundary are ordered last), as shown in Fig. 6(a). The
integral equation approach to truncating the mesh uses the
finite-element facets on the boundary as source fields in an
integral equation, resulting in a formulation for this piece of the
calculation similar to that in Section III, and with an amount

CWIK et al.: SCALABLE SOLUTIONS TO INTEGRAL-EQUATION AND FINITE-ELEMENT SIMULATIONS 551

(a) (b)

Fig. 6. (a) Nonzero matrix sparsity structure for system with dense surface
integral-equation boundary condition applied. (b) Surface of revolution in-
tegral equation boundary condition. The mesh has 5343 edges, with 936 of
those on the boundary.

of storage needed for the dense matrix as a function of the
electrical surface area tabulated in Section II. To circumvent
the large dense storage needed with this application of a
global boundary condition, a surface of revolution can be used
to truncate the mesh [37], [38], using a set of global basis
functions to discretize the integral equation on this surface.
This results in a system similar to that in Fig. 6(b) containing
very small diagonal blocks due to the orthogonal global
basis functions along the surface of revolution truncating
the mesh, as well as a matrix coupling the basis functions
in the integral-equation solution to the finite-element basis
function on the surface. These coupling terms lead to banded
thin rectangular matrices symmetric about the diagonal of
the matrix. Other forms of the integral equation solution,
as outlined in Section III, can also be used to discretize
the integral equation modeling fields on the mesh boundary,
leading to slight variations of the matrix systems shown in
Fig. 6.

The systems graphically represented in Fig. 6 generally have
the form

(19)

where is the sparse, symmetric finite-element matrix, found
from the volume integral in (17), can be termed the coupling
matrix that represents interactions between the finite elements
at the boundary and the integral equation basis functions, and

represents the integral equation, MoM matrix entries. The
symbol indicates the adjoint of a matrix. is the vector of
magnetic field coefficients for each finite element, andrepre-
sents the equivalent current basis functions on the boundary of
the mesh. For a scattering problem formulation, the incident
field couples only to the integral equation boundary, and is
represented as . For radiation problems the and vectors
are interchanged since the impressed source is modeled in the
mesh. Differing formulations lead to variations in (19), but the
general algebraic nature is preserved. To exploit the sparsity
of in (19), the system is solved in two steps by initially
substituting from the first equation in (19)
into the second, producing

(20)

This system’s size is on the order of the number of basis
functions in the integral-equation model, is dense, and can

be solved by either direct factorization or iterative means as
outlined in Section III. The intermediate calculation
is the sparse system of equations to be solved, producing.

The solution of this sparse system on a parallel computer
requires it to be distributed. Traditionally, the dependence
between mesh data and the resultant sparse matrix data is
exploited in the development of mesh-partitioning algorithms
[39]–[42], [55]. These algorithms break the physical mesh
or its graph into contiguous pieces that are then read into
each processor of a distributed memory machine. The mesh
is decomposed such that the pieces have roughly the same
number of finite elements, and to some measure, each piece has
minimal surface area. Since the matrix assembly routine [the
volume integral in (17)] generates nonzero matrix entries that
correspond to the direct interconnection of finite elements, the
mesh partitioning algorithm attempts to create a load balance
of the sparse system of equations. Processor communications
in the algorithm that solves the sparse system are limited by
the minimization of the surface area of each mesh piece.

Mesh-partitioning algorithms are generally divided into
multilevel spectral partitioning, geometric partitioning, and
multilevel graph partitioning. Spectral partitioning methods
[40], [41] create eigenvectors associated with the sparse
matrix, and use this information to recursively break the mesh
into roughly equal pieces. They require the mesh connectivity
information as input, and return lists of finite elements for each
processor. Geometric partitioning [39] is an intuitive procedure
that divides the finite-element mesh into pieces based on the
geometric (node coordinates) of the finite-element
mesh. This algorithm requires the mesh connectivity as well
as the node spatial coordinates and returns lists of finite
elements for each processor. Graph partitioning [42] operates
on the graph of the finite-element mesh (mesh connectivity
information) to collapse (or coarsen) vertices and edges into
a smaller graph. This smaller graph is partitioned into pieces,
and then uncoarsened and refined for the final partitions of
finite elements for the parallel processors. The input and
output is identical to spectral methods. Multilevel algorithms
operate by performing multiple stages of the partitioning
simultaneously, accelerating the algorithm. Most of these
algorithms and their offshoots perform similarly in practice,
with the spectral and graph partitioning algorithms being
simpler to use since they do not need geometry information.
An alternative to these mesh-partitioning algorithms is a
method that divides the matrix entries directly, without
operating on the finite-element mesh. This will be examined
in Section IV-A.

Different decompositions are used depending on whether di-
rect factorization or iterative methods are used in the solution.
Decompositions for iterative solutions, as well as the iterative
methods themselves have shown greater ease in parallelization
than direct factorization methods. Both approaches will now
be considered.

Direct Sparse Factorization Methods:Direct factorization
methods require a sequence of four steps; reordering of the
sparse system to minimize fill-in, a symbolic factorization
stage to determine the structure and storage ofin (13), the
numeric factorization producing the complex-valued entries

552 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

of , and the triangular forward and backward solutions. The
fundamental difficulty in the parallel sparse factorization is
the development of an efficient reordering algorithm that both
minimizes the fill-in and scales well on distributed memory
machines while controlling the amount of communication
necessary in the computation. The minimum degree algorithm
typically used in sequential packages is inherently nonparallel,
proceeding sequentially in the elimination of nodes in the
graph representing the nonzero structure of the matrix.
Other algorithms for reordering, as well as the following
symbolic and numeric factorization steps that depend on this
ordering are under study [43]. Current factorization algorithms
[44]–[46] can exhibit fast parallel solution times on moderately
large sized problems, but are dependent on the relative struc-
ture of the mesh, whether or not the problem is 2-D or 3-D,
and the relative sparsity of the nonzero entries. For problems
with more structure and less sparsity, higher performance is
obtained by using these sparse factorization solvers.

Sparse Iterative Solution Methods:A requirement of effi-
cient parallel implementations of the sparse iterative solvers
introduced above is a decomposition of the matrix onto the
processors that: 1) minimizes communication of the overlap-
ping vector pieces in the parallel matrix–vector multiply of
the iterative algorithm; 2) reduces storage of the resultant
dense vector pieces on each processor; and 3) allows for load
balance in storage and computation. Various parallel packages
have been written that accomplish these goals to some degree
[47], [48]. The mesh decompositions outlined previously can
be used and integrated with the parallel iterative algorithm to
solve the system.

Alternatively, a relatively simple approach that divides the
sparse matrix entries among the distributed memory proces-
sors can be employed [49]. The matrix is decomposed in
this implementation into row slabs of the sparse reordered
system. The reordering is chosen to minimize and equalize
the bandwidth of each row over the system [17], [18] [as
shown in Fig. 5(b)] since the amount of data communicated in
the matrix–vector multiply will depend upon the combination
of equalizing the row bandwidth as well, as minimizing it.
A row slab matrix decomposition strikes a balance between
near perfect data and computational load balance among the
processors, minimal but not perfectly optimal communication
of data in the matrix–vector multiply operation, and scalability
of simulating larger sized problems on greater numbers of
processors. Since the right-hand side vectors in the parallel
sparse matrix equation () are the columns of , these
columns are distributed as required by the row distribution of

. When setting up the row-slab decomposition,is split
by attempting to equalize the number of nonzeros in each
processor’s portion of (composed of consecutive rows of

). The rows in a given processor’s portion of determines
the rows of that processor will contain. As an example, if the
total number of nonzeros in is , a loop over the rows of

will be executed, counting the number of nonzeros ofin
the rows examined. When this number becomes approximately

(where is the number of processors that will be used
by the matrix equation solver), the set of rows offor a given
processor has been determined, as has the set of rows of.

Fig. 7. Computation time and scaling for a relatively small simulation
(dielectric cylinder with 43 791 edges, radius= 1 cm, height= 10 cm,
permittivity = 4.0 at 5.0 GHz). The first column shows time for single
processor T90. Times on T90 for CONNECT and FEM have been combined.

The matrix decomposition code used in this example con-
sists of a number of subroutines; initially, the potentially large
mesh files are read (READ), then the connectivity structure
of the sparse matrix is generated and reordered (CONNECT),
followed by the generation of the complex-valued entries of

(FEM), building the connectivity structure and filling the
matrix (COUPLING). Finally, the individual files containing
the row slabs of and the row slabs of must be written
to disk (WRITE). For each processor that will be used in
the matrix equation solver, one file containing the appropriate
parts of both the and matrices is written. Fig. 7 shows
the performance of these routines over varying numbers of
processors for a problem simulating scattering from a dielectric
cylinder modeled by 43 791 edges. The parallel times on a
Cray T3D are compared against the code running sequentially
on one processor of a Cray T90. As mentioned above, the
reordering algorithm and the algorithm generating the matrix
connectivity are fundamentally sequential. These routines do
not show high efficiency when using multiple processors—the
time for this algorithm is basically flat—whereas for routines
that can be parallelized (FEM, COUPLING, and WRITE),
doubling the number of processors reduces the amount of time
by a factor of approximately two. The time for reading the
mesh is bound by I/O rates of the computer, and the time for
writing the decomposed matrix data varies slightly for the 128
and 256 processor cases due to other users also doing I/O on
the system. As will be shown in the next result, a key point
of this approach to matrix decomposition is that the total time
needed (less than 100 s on eight processors) is substantially
less than the time needed for solving the linear system, and
any inefficiencies here are less important than those in the
iterative solver.

In this example, quasi-minimum residual algorithm [52] is
used to solve the sparse system of equations . With
the row-slab decomposition used, the machine is logically
considered to be a linear array of processors, with each slab
of data residing in one of the processors. Central components
of the quasiminimum residual algorithm that are affected by
the use of a distributed memory machine are the parallel

CWIK et al.: SCALABLE SOLUTIONS TO INTEGRAL-EQUATION AND FINITE-ELEMENT SIMULATIONS 553

Fig. 8. Local sparse matrix-dense vector multiply graphically displayed.

sparse matrix-dense vector multiply, and dot products and
norm calculations that need vector data distributed over the
machine. The dominant component is the matrix-vector mul-
tiply, accounting for approximately 80% of the time required
in a solution. The parallel sparse matrix-dense vector multiply
involves multiplying the matrix that is distributed across
the processors in row slabs, each containing a roughly equal
number of nonzero elements, and a dense vector, that
is also distributed over the processors, to form a product
vector , distributed as is (Fig. 8). Since the matrix
has been reordered for minimum bandwidth, the minimum
and maximum column indexes of the slab are known. If
the piece of the dense vector local to this processor has
indexes within this extent of column indexes, the multiply
may be done locally and the resultant vectorwill be purely
local. In general, the local row indexes of the dense vector

do not contain the range of column indexes; therefore, a
communication step is required to obtain the portions of the
multiply vector required by the column indexes of the
matrix. This communication step only requires data from a few
processors to the left and right. The exact number of processors
communicating data is dependent on the row bandwidth of
the local piece of , and the number of processors being
used. In the simulations considered, the number of processors
communicating data is typically one or two in each direction
on scaled problems.

Shown in Fig. 9 are plots of time to convergence on differ-
ent numbers of processors for five different problems (fixed
size problems). The number of unknowns in the finite-element
mesh and the number of columns of are indicated on the
plots. The quasiminimum residual algorithm was stopped when
the normalized residual was reduced three orders of magnitude
for each column of . With an initial guess being the zero
vector, this results in a normalized residual of 0.1%, a value
that is sufficient for this scattering problem. Given a fixed
communication percentage and a fixed rate for local work,
doubling the number of processors for a given problem would
halve the total solution time. The curves in Fig. 9 do not
drop linearly at this rate for increasing numbers of processors,
because there is a decrease in the amount of work per processor
while the amount of data communicated increases, causing the
curves to level off.

Another factor in the performance of the parallel ma-
trix–vector multiply is the percentage of communication. This
is related to the number of processors to the left and right that
each processor must communicate. It is clear that running a
fixed size problem on an increasing number of processors will
generate a growing amount of communication. The amount

Fig. 9. Time of convergence for five different problems. The time shown is
the total execution time for the solver on different numbers of processors. The
C matrix had 116 columns in each case.

Fig. 10. Percentage of communication versus number of processors for
parallel matrix–vector multiply, for four different size (number of edges)
meshes of dielectric cylinder.

of communication is a function of how finely the matrix
is decomposed, since its maximum row bandwidth after re-
ordering is not a function of the number of processors used in
the decomposition. If the maximum row bandwidth isand
each processor in a given decomposition has approximately
rows of , then most processors will require one processor in
each direction for communication. If the number of processors
used for the distribution of is doubled, each processor will
have approximately rows of . Since the row bandwidth
doesn’t change, each processor will now require communi-
cation in each direction from two processors. But since the
number of floating point operations required hasn’t changed,
the communication percentage should roughly double. This
can be seen in Fig. 10, which shows communication percent-
age versus number of processors, for four problem sizes.

The row-slab decomposition is a simple means for breaking
the sparse matrix equation among the processors and while
the mesh-decomposition algorithms outlined above can also
be used, differences between the approaches in time to so-
lution on a parallel computer were found to be small for
either approach. Two alternative mesh-decomposition schemes
have been compared to the matrix-partitioning algorithm,
contrasting data load balance, communication load balance,
the total amount of communication, and the performance of

554 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

the local processor matrix–vector performance resulting from
the specific decomposition used. The first is an algorithm
termed JOSTLE [55] that uses various optimization methods to
equalize the mesh partitions among the processors. The second
is a multilevel graph partitioning scheme termed METIS [42].
Among the three approaches, no discernible difference was
found in data and communication load balance, and in the
performance of the local processor matrix–vector performance.
A difference was found in the total amount of communication
needed in the solution of the sparse system of equations.
When normalizing the total amount of communication in
the matrix partition algorithm to 1.0, the JOSTLE algorithm
reduced the amount of communication to 0.26, and the METIS
algorithm reduced it to 0.22. From Fig. 10, it is noted that the
percentage of communication time in the complete solver is
8% for scaled-sized problems (those that fit into the minimal
number of processors needed to solve the problem). It is this
fraction of the total CPU time that can be reduced by the
0.26 and 0.22 fractions found using the mesh-decomposition
algorithms, i.e., the total time to solve the system would
be reduced by just over 6% using the METIS algorithm
for mesh decomposition. It was found that the METIS and
JOSTLE algorithms did produce less communication overhead
as the fixed-size problem was solved on larger numbers of
processors, thereby further reducing total execution time. This
savings over the matrix-partitioning method is offset though,
since the overall execution time decreases dramatically as seen
in Fig. 9 for a fixed-size problem.

Krylov subspace methods different from the quasi-minimum
residual algorithm can be coupled with a mesh- or matrix-
decomposition method and used for sparse matrix solution.
In [47] the conjugate gradient squared and generalized min-
imum residual method are used with geometric partitioning
algorithms and then compared. The Krylov iterative method
implementations are necessarily similar since the dominant
component of the solver is the matrix–vector multiply. Parallel
speedup for fixed sized problems are reported in [47] for
the conjugate gradient squared and the generalized minimum
residual method. The speedups are very similar to those shown
in Fig. 9.

A possible means to substantially shorten the solution time
in an iterative solution is the use of an effective preconditioner.
The use of incomplete Cholesky preconditioners used in
sequential calculations is difficult to implement in a distributed
memory parallel environment due to the need for performing a
forward and backward solution with each matrix multiply step
in (16). On a parallel machine, these are essentially sequential
operations that can give greatly reduced performance [53]. A
promising alternative is to calculate an approximation to the
inverse of the system, rather than a factorization of the system
as is done in the incomplete Cholesky approximation. A sparse
approximate inverse [54] produces a matrix with a controllable
number of nonzeros that approximates the inverse of, and
rather than calculating forward and backward solutions, it
multiplies at each step of the iterative algorithm. The
matrix–matrix multiply can be achieved with much higher
performance than the forward and backward solutions used
in the incomplete factorizations.

V. DISCUSSION

This paper presented an overview of solutions to surface-
integral equation and volumetric finite-element methods on
sequential and distributed memory computer architectures.
Both the sequential algorithmic scalability as well as scala-
bility on parallel computer systems were presented for current
computer technology, with extrapolation to next generation
technologies. A broad set of references are given. When a
uniform resource locator (URL) is also referenced, it points
to software which was freely available at the time this paper
was written.

ACKNOWLEDGMENT

The authors would like to thank C. Zuffada and V. Jamnejad
of the Jet Propulsion Laboratory, Pasadena, CA, for their
contributions to the sequential version of the finite-element
software discussed in Section IV-A.

REFERENCES

[1] E. Miller, “A selective survey of computational electromagnetics,”IEEE
Trans. Antennas Propagat.,vol. 36, pp. 1281–1305, Sept. 1988.

[2] M. N. O. Sadiku, Numerical Techniques in Electromagnetics.Boca
Raton: CRC, 1992.

[3] J. J. Dongarra, L. Grandinetti, G. R. Joubert, and J. Kowalik, Eds.,
“High performance computing: Technology, methods, and applications,”
in Advances in Parallel Computing 10.Amsterdam, The Netherlands:
Elsevier, 1995.

[4] E. Miller, “Solving bigger problems—By decreasing the operation count
and increasing the computation bandwidth,”Proc. IEEE,, vol. 79, no.
10, pp. 1493–1504 Oct. 1991.

[5] V. Kumar, A. Grama, A. Gupta, and G. Karypis,Introduction to
Parallel Computing. Redwood City, CA: Benjamin/Cummings, 1994;
also available: http://www.cs.umn.edu/ kumar/.

[6] T. Cwik and J. Patterson, Eds., “Computational electronics and su-
percomputer architecture,” inProgress in Electromagnetics Research.
Cambridge, U.K.: EMW, 1993, vol. 7.

[7] R. F. Harrington,Field Computation by Moment Method.New York:
Macmillan, 1968.

[8] A. J. Poggio and E. K. Miller, “Integral equation solutions of three-
dimensional scattering problems,” inComputer Techniques for Electro-
magnetics, R. Mittra, Ed. New York: Hemisphere, 1973, ch. 4.

[9] G. Golub and C. Van Loan,Matrix Computations. Baltimore, MD:
John Hopkins Univ. Press, 1989.

[10] E. Anderson, Z. Bai, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S, Hammarling, A. McKenney, S. Ostrouchov, and D. Sorenson,
LAPACK User’s Guide. Philadelphia, PA: Soc. Indust. Appl. Mathem.,
1992; also available: http://netlib2.cs.utk.edu/lapack/index.html.

[11] E. Yip and B. Dembart, “Monostatic calculations for a 3D MOM code
with fast mutipole method,” inProgress in Electromagn. Res. Symp.
Proc., Seattle, WA, July 24–28, 1995, p. 53.

[12] J. Rahola, “Solution of dense systems of linear equations in the discrete-
dipole approximation,”SIAM J. Sci. Comput.,vol. 17, no. 1, pp. 78–89,
1996.

[13] M. Sancer, R. McClary, and K. Glover, “Electromagnetic computation
using parametric geometry,”Electromagn.,vol. 10, no. 1/2, pp. 85–104,
1990.

[14] F. X. Canning, “The impedance matrix localization (IML) method for
moment-method calculations,”IEEE Antennas Propagat. Mag.,vol. 32,
pp. 18–30, Oct. 1990.

[15] W. Chew, C. Lu, and Y. Wang, “Efficient computation of three-
dimensional scattering of vector electromagnetic waves,”J. Opt. Soc.
Amer. A,vol. 11, no. 4, pp. 1528–1537, 1994.

[16] V. Rokhlin, “Rapid solution of integral equations of scattering theory
in two dimensions,”J. Comp. Phys., vol. 86, pp. 414–439, Feb. 1990.

[17] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescription,”IEEE Antennas
Propagat. Mag., vol. 35, pp. 7–12, June 1993.

[18] M. A. Stalzer, “A parallel fast multipole method for the Helmholtz
equation,”Parallel Proc. Lett.,vol. 5, pp. 263–274, 1995.

CWIK et al.: SCALABLE SOLUTIONS TO INTEGRAL-EQUATION AND FINITE-ELEMENT SIMULATIONS 555

[19] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,”IEEE Trans. Antennas Propagat.,vol.
AP-30, pp. 409–418, Mar. 1982.

[20] W. Johnson, D. R. Wilton, and R. M. Sharpe, “Modeling scattering
from and radiation by arbitrary shaped objects with the electric field
integral equation triangular surface patch code,”Electromagn.,vol. 10,
pp. 41–64, Jan.–June 1990.

[21] J. J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart,LINPACK
User’s Guide. Philadelphia, PA: Soc. Indust. Appl. Mathem., 1979;
also available: http://netlib2.cs.utk.edu/linpack/index.html.

[22] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An
extended set of FORTRAN basic linear algebra subprograms,”ACM
Trans. Mathem. Software,vol. 14, pp. 1–17, 1988; also available:
http://netlib2.cs.utk.edu/blas/index.html.

[23] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling,
“A set of Level 3 basic linear algebra subprograms,”ACM
Trans. Mathem. Software,vol. 16, pp. 1–17, 1990; also available:
http://netlib2.cs.utk.edu/blas/index.html.

[24] T. Cwik, R. van de Geijn, and J. Patterson, “Applica-
tion of massively parallel computation to integral equa-
tion models of electromagnetic scattering,”J. Opt. Soc.
Amer., vol. 11, pp. 1538–1545, Apr. 1994; also available:
ftp://microwave.jpl.nasa.gov/pub/PARALLEL/COMPLEX.SOLVER.

[25] J. Jin, The Finite Element in Electromagnetics.New York: Wiley,
1993.

[26] J. Lee and R. Mittra, “A note on the application of edge-elements for
modeling 3-dimensional inhomogeneously-filled cavities,”IEEE Trans.
Microwave Theory Tech.,vol. 40, pp. 1767–1773, Sept. 1992.

[27] S. Pissanetzky,Sparse Matrix Technology.London, U.K.: Academic,
1984.

[28] I. S. Duff, A. M. Erisman, and J. K. Reid,Direct Methods for Sparse
Matrices. New York: Oxford Univ. Press, 1986.

[29] E. Ng and B. Peyton, “Block sparse Cholesky algorithms on advanced
uniprocessor computers,”SIAM J. Sci. Comput.,vol. 14, no. 5, pp.
1034–1056, pp. 1034–1056, 1993.

[30] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V.
Eijkhout, R. Pozo, C. Romine, and H. van der Vorst,Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
Philadelphia, PA: Soc. Indust. Appl. Mathem., 1994; also available:
http://netlib2.cs.utk.edu/templates/index.html.

[31] M. Jones and P. Plassmann, “An improved incomplete Cholesky factor-
ization,” ACM Trans. Mathem. Software,vol. 21, no. 1, pp. 5–17, Mar.
1995; also available: http://netlib2.cs.utk.edu/toms/740.

[32] D. O’Leary, “Parallel implementation of the block conjugate algorithm,”
Parallel Comput.,vol. 5, pp. 127–139, 1987.

[33] R. Freund and M. Malhotra, “A block-QMR algorithm for nonhermitian
linear systems with multiple right-hand sides,” preprint 1996.

[34] R. Mittra, O. Ramahi, A. Khebir, R. Gordon, and A. Kouki, “A
review of absorbing boundary conditions for two- and three-dimensional
electromagnetic scattering problems,”IEEE Trans. Magn.,vol. 25, no.
7, pp. 3034–3040, July 1989.

[35] J.-M. Jin and V. Liepa, “Application of hybrid finite element method to
electromagnetic scattering from coated cylinders,”IEEE Trans. Antennas
Propagat.,vol. 36, pp. 50–54, Jan. 1988.

[36] X. Yuan, D. Lynch, and J. Strohbehn, “Coupling of finite element and
moment methods for electromagnetic scattering from inhomogenous
objects,” IEEE Trans. Antennas Propagat.,vol. 38, pp. 386–394, Mar.
1990.

[37] W. Boyse and A. Seidl, “A hybrid finite element method for near bodies
of revolution,” IEEE Trans. Magn.,vol. 27, pp. 3833–3836, Sept. 1991.

[38] T. Cwik, C. Zuffada, and V. Jamnejad, “Modeling three-dimensional
scatterers using a coupled finite element-integral equation representa-
tion,” IEEE Trans. Antennas Propagat.,vol. 44, pp. 453–459, Apr.
1996.

[39] B. Nour-Omid, A. Raefsky, and G. Lyzenga, “Solving finite element
equations on concurrent computers,”Amer. Soc. Mech. Eng.,A. Noor,
Ed., pp. 291–307, 1986.

[40] A. Pothen, H. Simon, and K. Liou, “Partitioning sparse matrices with
eigenvectors of graphs,”SIAM J. Matrix Anal. Appl.,vol. 11, pp.
430–452, July 1990.

[41] B. Hendrickson and R. Leland, “An improved spectral graph partitioning
algorithm for mapping parallel computations,”SIAM J. Sci. Comput.,
vol. 16, pp. 452–469, Mar. 1995.

[42] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” Tech. Rep. TR 95-035, 1995, Dept.
Comput. Sci., Univ. Minnesota; also available: http://www.cs.umn.edu/
karypis/metis/metis.html.

[43] M. Heath, E. Ng, and B. Peyton, “Parallel algorithms for sparse linear
systems,”SIAM Rev.,vol. 33, no. 3, pp. 420–460, 1991.

[44] E. Rothberg, “Alternatives for solving sparse triangular
systems on distributed-memory multi-processors,”Parallel
Comput., vol. 21, pp. 1121–1136, 1995; also available:
http://www.ssd.intel.com/appsw/ses.html.

[45] A. Gupta, G. Karypis, and V. Kumar, “Highly scalable parallel algo-
rithms for sparse matrix factorization,” Tech. Rep. TR 94-63, Dept.
Comput. Sci., Univ. Minnesota, 1994.

[46] W. Dearholt, S. Castillo, and G. Hennigan, “Solution of large sparse ir-
regular systems on a massively parallel computer,” in3rd Int. Workshop
Irr. 96, Santa Barbara, CA, Aug. 1996, pp. 49–62.

[47] J. Shadid and R. Tuminaro, “Sparse iterative algorithm software for
large-scale MIMD machines: An initial discussion and implementation,”
Concurrency: Practice Exper.,vol. 4, pp. 481–497, Sept. 1992; also
available: http://www.cs.sandia.gov/HPCCIT/aztec.html.

[48] M. Jones and P. Plassman, “Scalable iterative solutions of sparse linear
systems,”Parallel Comput.,vol. 20, pp. 753–773, 1994; also available:
http://www.mcs.anl.gov/home/freitag/SC94demo/software/blocksolve.
html.

[49] T. Cwik, D. Katz, C. Zuffada, and V. Jamnejad, “The application of
scalable distributed memory computers to the finite element modeling
of electromagnetic scattering,”Int. J. Numer. Methods Eng.,to be
published.

[50] A. George and J. Liu,Computer Solution of Large Sparse Positive
Definite Systems.Englewood Cliffs, NJ: Prentice Hall, 1981.

[51] J. Lewis, “Implementation of the Gibbs–Poole–Stockmeyer and
Gibbs–King algorithms,”ACM Trans. Mathem. Software,vol. 8, pp.
180–189, 1982; also available: http://netlib2.cs.utk.edu/toms/582.

[52] R. Freund, “Conjugate gradient-type methods for linear systems
with complex symmetric coefficient matrices,”SIAM J. Stat. Com-
put., vol. 13, no. 1, pp. 425–448, Jan. 1992; also available:
http://netlib2.cs.utk.edu/linalg/lalqmr.

[53] E. Rothberg and A. Gupta, “Parallel ICCG on a hierarchical memory
multiprocessor—Addressing the triangular solve bottleneck,”Parallel
Comput.,vol. 18, pp. 719–741, 1992.

[54] M. J. Grote and T. Huckle, “Parallel preconditioning with sparse
approximate inverses,”SIAM J. Scientific Comp.,to be published; also
available: http://www-sccm.stanford.edu/Students/grote.html.

[55] C. H. Walshaw, M. Cross, and M. G. Everett, “A localized algorithm
for optimizing unstructured mesh partitions,”Int. J. Supercomput. Appl.
High Performance Comp.,vol. 9, no. 4, pp. 280–295, 1995.

Tom Cwik (S’79–M’86–SM’94), for photograph and biography, see p. 459
of the April 1996 issue of this TRANSACTIONS.

Daniel S. Katz (S’88–M’95) was born in Belleville,
IL, on September 11, 1966. He received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from Northwestern University, Evanston, IL, in
1988, 1990, and 1994, respectively.

From 1993 to 1996, he was employed by
Cray Research at the Jet Propulsion Laboratory,
Pasadena, CA, where he worked on solving
problems in computational electromagnetics through
the use of massively parallel supercomputers.
He has recently accepted a position with the Jet

Propulsion Laboratory in the High Performance Computing Systems and
Applications Group. His research interests include computational modeling
of electromagnetic wave propagation, radiation, and scattering in both the
time and frequency domains, as well as general algorithm development and
implementation on various types of computers. The goal of his research is to
develop enabling technologies for problem solving.

Dr. Katz is a member of Eta Kappa Nu and Tau Beta Pi.

Jean Patterson, photograph and biography not available at the time of
publication.

