
From Abstractions to MODELS: MOdels for Distributed and
Extremely Large-scale Science

Shantenu Jha1, Daniel S. Katz2, Matteo Turilli1, Jon Weissman3

1 RADICAL Laboratory, Electric and Computer Engineering, Rutgers University, New Brunswick, NJ, USA
2 Computation Institute, University of Chicago & Argonne National Laboratory, Chicago, IL, USA

3 Computer Science and Engineering Department, University of Minnesota, Minneapolis, MN, USA

Many important advances in science and engineering are due to large-scale distributed computing.
Notwithstanding this reliance, we are still learning how to design and deploy large-scale production
Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and
an absence of generally acceptable and usable distributed computing abstractions. These gaps underlie
the following observations:

• Distributed applications are characterized by limited functional sophistication, yet they are not simple
to develop. “Heroic” effort is required to add or incorporate new functionality. This suggests a possible
lack of reliable abstractions for distributed applications.

• Existing production DCIs such as OSG and XSEDE are designed for specific classes of applications.
It is neither easy to port applications from one DCI to another, nor to expand the type of applications
supported by each DCI. Furthermore, it is not easy to interoperate across production DCIs. This is
due, at least in part, to a lack of infrastructure abstractions that represent DCI well enough to enable
developers to build richer applications.

• The lack of an adequate set of abstractions for distributed applications and infrastructure, as well as
design principles for DCI results in: (i) applications that are brittle, (ii) an inability to reason about
the spatiotemporal execution of distributed workloads, and answer even basic questions about their
execution. For example: Which resources should a workload use? What time-to-solution should a
workload expect? How do specific execution decisions influence the performance?

The AIMES project was conceived against this backdrop, following on the heels of a comprehensive
survey of scientific distributed applications [1]. The survey established, arguably for the first time,
the relationship between infrastructure and scientific distributed applications. It examined well known
contributors to the complexity associated with infrastructure, such as inconsistent internal and external
interfaces, and demonstrated the correlation with application brittleness. It discussed how infrastructure
complexity reinforces the challenges inherent in developing distributed applications.

We have identified several additional contributing factors responsible for infrastructural complexity, for
example, the absence of extensible and scalable abstractions for resource management. One consequence
of which is that different applications manage their execution and distributed resource utilization in diverse
if not irreconcilable ways, both in principle and practice. This results in applications being bound to specific
platforms, thus acting as a further barrier to interoperability. Determining widely-usable abstractions for
resource management is a non-trivial undertaking, made harder by the fact that DCIs are characterized by
both spatial and temporal fluctuation.

An important driver of AIMES was to first identify such abstractions, and then to translate them into
scalable and uniform distributed resource management approaches and capabilities. A relevant prerequisite
was the need to “formalize and normalize” the set of decisions that are needed to execute a distributed
application on multiple and diverse resources. A related issue was integrating information from the
application and infrastructure as the nature of execution decisions is intimately related to the type of
information available.

In the absence of adequate abstractions, how can we design experiments to investigate or support
different ways to execute distributed applications, while being extensible and scalable to real science



applications? Furthermore, given the broad range of application properties, resource characteristics, and
the type and reliability of resource information, how can we “experiment” with and “integrate” different
application requirements, infrastructure types, and information?

AIMES laid the foundations to address the tripartite challenge of dynamic resource management,
integrating information, and portable and interoperable distributed applications. Four abstractions were
defined and implemented: skeleton, resource bundle, pilot, and execution strategy. Skeletons are
synthetic applications with a spectrum of characteristics and tunable properties to mimic the behavior of
real-life distributed applications [2]. Resource bundles represent an aggregate set of resources of fluctuating
capacity that hide the heterogeneity and dynamism inherent in DCI resources. The pilot abstraction is well
known in distributed computing but inconsistently used and understood. A sound theoretical basis was
provided for the pilot abstraction [3, 4] and its applicability was extended also to high-performance and
data-intensive computing [5, 6]. Execution strategies model the set of decisions that need to be made in
order to execute a distributed application on diverse resources [7].

The four abstractions were implemented into software modules and then aggregated into the AIMES
middleware. This middleware successfully integrates information across the application layer (skeletons)
and resource layer (bundles), derives a suitable execution strategy for the given skeleton and enacts its
execution by means of pilots on one or more resources, depending on the application requirements, and
resource availabilities and capabilities.

Experience from AIMES
AIMES has enhanced our understanding of extreme-scale distributed science via the execution of

applications and the dynamic federation of resources [8].

• In PY1, we designed, developed, and integrated preliminary implementations of abstractions for
distributed applications and resources.

• In PY2, we experimented with a range of execution strategies on dynamic federation of heterogeneous
resources via pilot overlays on large-scale production DCI.

• In PY3, we are generalizing the core capabilities to a wider range of resource and information
types, applications, and infrastructure classes. Furthermore we are exploring the logical federation of
resources with well defined capacity from time-varying resources overlays.

AIMES has advanced the state of distributed computing in at least three important ways:

1. We have designed and implemented powerful and extensible abstractions for distributed applications
and resources. Collectively, they provide the ability to execute applications on dynamically varying
resources. However, exposing simplicity is not the same as hiding complexity. To that end, we support
scalable execution of a range of applications on production DCI by integrating abstractions at multiple
levels. Scale, generality, extensibility, reasoning, and repeatability are the basis for the claim that
the complexity of DCI at large scale can be managed via abstractions. Collectively, the abstractions
provide an integrated approach to resource-management in distributed, high-performance and data-
intensive scenarios, which hitherto were considered distinct.

2. Building upon the ability to integrate information, we have proposed the abstraction of execution
strategy. Execution strategies support end-to-end reasoning by capturing the decisions involved
in the execution of different applications independent of the underlying resource utilization model.
Furthermore, the AIMES infrastructure can take an execution strategy and implement it for a
distributed application. This permits empirically determining a suitable, if not yet optimal, execution
strategy for a given application using a given set of resources, and thus provides the ability to
examine the impact of execution decisions on scalable execution as a function of different application
and resource characteristics. We have shown that execution strategies can improve the qualitative

2



and quantitative aspects of distributed execution [7] dissolving the artificial barriers between high-
throughput and high-performance.

3. We have implemented an experimental “laboratory” that supports investigation of questions and along
dimensions that were not originally conceived. The AIMES infrastructure supports the design of new
experiments and analyzing tradeoffs of different decisions; the same software system also supports
scalable science. For example, the AIMES infrastructure supports experimental workloads on five and
more distributed resources, but the RADICAL-Pilot component also supports thousands of MPI jobs
used for biophysical simulations [9].

These advances should be benchmarked against an earlier landscape dominated by distributed
applications that needed high-levels of customization and limited scalability on the one hand, with DCIs
that were characterized by “gluing it together” and the absence of a systems approaches on the other.

What are the important questions that AIMES motivates us to ask?
Building upon advances arising from skeletons, bundles and pilots, execution strategies allow qualitative

reasoning about distributed workload execution that is resource and workload agnostic. There remains,
however, a critical need for a quantitative basis for distinction between different possible decisions. For
example:

• What are the constraints on the quantitative advantages arising from execution strategies? How
are these dependent on workload properties? Or on resource availability? How does this translate
into making “effective” scheduling decisions? How can we estimate different metrics or measures of
performance?

• How sensitive is the planning and execution of complex workloads on the specifics of distributed
infrastructure? How can different heterogeneous infrastructure be unified by a time-dependent
capacity model that goes beyond point prediction models?

• How will we design the next DCI to meet the requirements of multiple science projects with predefined
quality-of-service? Is it possible to derive models that allow us to “design infrastructure” for specific
performance and requirements?

To answer these questions for current and future distributed computing systems requires new research
along the following lines:

• From modeling to models: Models to answer the aforementioned questions, if any, are currently
restricted to specific application scenarios and infrastructure, and are not general purpose.
Quantitative modeling of execution must include models of DCI resources, middleware, and
applications. Planning and execution would be more precise with models of DCI than without, but
such robust models do not exist yet. How do we build macroscopic models of application execution
that are not unmanageably sensitive to microscopic heterogeneities? How would models that support
design for specific performance generalize to design principles and architectures for next generation
of distributed computing infrastructure? The answer to these questions cannot be derived from a
single monolithic model, but require a hybrid set of models at multiple levels, different scales, and
granularity. How are such models designed and composed? How can models support quantitative
end-to-end reasoning?

• From sensing to actuation: We must transition from resource federation of known and predetermined
resources to federation of resources that are discovered dynamically. How does the addition of
resources that were not known at the time of initial planning change the course of execution? How do
the kind of resources that the middleware “actuates” be influenced by application properties? These
questions reiterate the need for quantitative models of applications, resources, and execution.

3



• Dynamism at extreme scale: Dynamism is going to become more pervasive, diverse, and significant
as we move towards greater scale. For example, with better resource discovery and new types of
resources, there will be a larger number of resources resulting in greater variation in their temporal
properties. Different classes of applications will result in more burstiness in application and data
production. In other words, dynamism is set to become a dominant and first class property of both
distributed applications and DCIs at larger scale. Inter alia, this will require better algorithms that are
more responsive and better able to handle dynamism along the different dimensions. Last but not
least, AIMES was designed upon the assumption that information could be dynamically integrated
across levels. To what dynamic scales do these assumptions and approaches work? Answers to
these questions require conceptual advances in the way we characterize dynamism in large-scale
DCIs, as well as a radically different approach to responding to it.

Each of these research tracks and themes represents fundamental challenges as the community
attempts to take distributed computing to the next scale. Each track encompasses a plethora of questions
in turn. We hope to pursue these important questions as logical continuation of and within the powerful
framework of AIMES.

References
[1] Shantenu Jha, Murray Cole, Daniel S. Katz, Manish Parashar, Omer Rana, and Jon Weissman.

Distributed computing practice for large-scale science and engineering applications. Concurrency and
Computation: Practice and Experience, 25(11):1559–1585, 2013.
http://dx.doi.org/10.1002/cpe.2897.

[2] Daniel S. Katz, Andre Merzky, Zhao Zhang, and Shantenu Jha. Application skeletons: Construction and
use in eScience. Future Generation Computer Systems, 2015.
http://dx.doi.org/10.1016/j.future.2015.10.001.

[3] Andre Luckow, Mark Santcroos, Andre Merzky, Ole Weidner, Pradeep Mantha, and Shantenu Jha. P*:
A model of pilot-abstractions. IEEE 8th International Conference on e-Science, pages 1–10, 2012.
http://dx.doi.org/10.1109/eScience.2012.6404423.

[4] Matteo Turilli, Mark Santcroos, and Shantenu Jha. A Comprehensive Perspective on Pilot-Jobs, 2015.
(under review) http://arxiv.org/abs/1508.04180.

[5] Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha. Pilot-Data: An Abstraction for
Distributed Data. Journal Parallel and Distributed Computing, October 2014.
http://dx.doi.org/10.1016/j.jpdc.2014.09.009.

[6] Andre Luckow, Ioannis Paraskevakos, and Shantenu Jha. Pilot-Abstraction: A Valid Abstraction for
Data-Intensive Application on HPC, Hadoop and Cloud Infrastructures?, 2015.
http://arxiv.org/pdf/1501.05041v1.pdf.

[7] Matteo Turilli, Feng (Francis) Liu, Zhao Zhang, Andre Merzky, Michael Wilde, Jon Weissman, Daniel S.
Katz, and Shantenu Jha. Integrating Abstractions to Enhance the Execution of Distributed Applications.
In Proceedings of 30th IEEE International Parallel and Distributed Processing Symposium (IPDPS),
2016. http://arxiv.org/abs/1504.04720.

[8] AIMES Presentations: SC14, NGNS PI Meeting and MAGIC Meeting, http://goo.gl/xJubgS.

[9] Brian K. Radak, Melissa Romanus, Tai-Sung Lee, Haoyuan Chen, Ming Huang, Antons Treikalis,
Vivekanandan Balasubramanian, Shantenu Jha, and Darrin M. York. Characterization of the Three-
Dimensional Free Energy Manifold for the Uracil Ribonucleoside from Asynchronous Replica Exchange
Simulations. Journal of Chemical Theory and Computation, 11(2):373–377, 2015. http://dx.doi.

org/10.1021/ct500776j.

4


