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Abstract—We describe and test a software approach to fault detection in common numerical algorithms. Such result checking or

algorithm-based fault tolerance (ABFT) methods may be used, for example, to overcome single-event upsets in computational

hardware or to detect errors in complex, high-efficiency implementations of the algorithms. Following earlier work, we use checksum

methods to validate results returned by a numerical subroutine operating subject to unpredictable errors in data. We consider common

matrix and Fourier algorithms which return results satisfying a necessary condition having a linear form; the checksum tests

compliance with this condition. We discuss the theory and practice of setting numerical tolerances to separate errors caused by a fault

from those inherent in finite-precision floating-point calculations. We concentrate on comprehensively defining and evaluating tests

having various accuracy/computational burden tradeoffs, and we emphasize average-case algorithm behavior rather than using worst-

case upper bounds on error.

Index Terms—Algorithm-based fault tolerance, result checking, error analysis, aerospace, parallel numerical algorithms.
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1 INTRODUCTION

THE work in this paper is motived by a specific
problem—detecting radiation-induced errors in space-

borne commercial computing hardware—but the results are
broadly applicable. Our approach is useful whenever the
output of a numerical subroutine is suspect, whether the
source of errors is external or internal to the design or
implementation of the routine. The increasing sophistica-
tion of computing hardware and software makes error
detection an important issue. On the hardware side,
growing design complexity has made subtle bugs or
inaccuracies difficult to detect [1]. Simultaneously, continu-
ing reductions in microprocessor feature size will make
hardware more vulnerable to environmentally-induced
upsets [2]. On the software side, there are similar issues
which come from steadily increasing design complexity [3],
[4]. There are also new challenges resulting from decom-
position and timing issues in parallel code and the advent
of high-performance algorithms whose execution paths are
determined adaptively at runtime (e.g., “codelets” [5]).

To substantiate this picture, consider NASA’s Remote

Exploration and Experimentation (REE) project [6]. The

project aimed to enable a new type of scientific investigation

by moving commercial supercomputing technology into

space. Transferring such computational power to space

would enable highly autonomous missions with substantial

onboard analysis capability, mitigating the control latency
that is due to fundamental light-time delays, as well as
bandwidth limitations in the link between spacecraft and
ground stations. To do this, REE did not desire to develop a
single computational platform, but rather to define and
demonstrate a process for rapidly transferring commercial
high-performance hardware and software into fault-toler-
ant architectures for space.

Traditionally, spacecraft components have been radia-
tion-hardened to protect against single event upsets (SEUs)
caused by galactic cosmic rays and energetic protons.
Hardening lowers clock speed and may increase power
requirements. Even worse, the time needed to radiation-
harden a component guarantees both that it will be
outdated when it is ready for use in space, and that it will
have a high cost which must be spread over a small number
of customers. Use of commodity off-the-shelf (COTS)
components in space, on the other hand, implies that faults
must be handled in software.

The presence of SEUs requires that applications be self-
checking, or tolerant of errors, as the first layer of fault-
tolerance. Additional software layers can protect against
errors that are not caught by the application [7]. For
example, one such layer automatically restarts programs
which have crashed or hung. This works in conjunction
with self-checking routines: if an error is detected and the
computation does not yield correct results upon retry, an
exception is raised and the program may be restarted. Since
the goal of the project is to take full advantage of the
computing power of the hardware, simple process replica-
tion is undesirable.

In this paper, we focus on detecting SEUs in the
application layer. An SEU affecting application data is
particularly troublesome because it would typically have
fewer obvious consequences than an SEU to code, which
would be expected to cause an exception. (Memory will
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be error-detecting and correcting, so faults to memory
will be largely screened: most data faults will therefore
affect the microprocessor or its cache.) Fortunately, due to
the locality of scientific codes, much of their time is spent
in certain common numerical subroutines. For example,
about 70 percent of the processing in one of the REE
science applications, a Next Generation Space Telescope
[8] phase retrieval algorithm [9], is spent in fast Fourier
transforms. This characteristic of the applications moti-
vates our emphasis on correctness testing of individual
numerical subroutines.

Following the COTS philosophy laid out above, our
general approach has been to wrap existing parallel
numerical libraries (ScaLAPACK [10], PLAPACK [11],
FFTW [5]) with fault-detecting middleware. This avoids
altering the internals of these highly tuned parallel
algorithms. We can treat subroutines that return results
satisfying a necessary condition having a linear form; the
checksum tests compliance with this necessary condition.
Here, we discuss the theory and practice of defining tests
and setting numerical tolerances to separate errors caused
by a fault from those inherent in floating-point calculations.

To separate these two classes of errors, we are guided by
well-known upper bounds on error propagation within
numerical algorithms. These bounds provide a maximum
error that can arise due to register effects—even though the
bounds overestimate the true error, they do show how
errors scale depending on algorithm inputs. Adapting these
bounds to the fault tolerant software setting yields a series
of tests having different efficiency and accuracy attributes.
To better understand the characteristics of the tests we
develop, we perform controlled numerical experiments.

The main contributions of this paper are:

. Comprehensive development of input-independent
tests discriminating floating-point roundoff error
from fault occurrence.

. Within this context, emphasis on average-case error
estimates, rather than upper bounds, to set the fault
threshold. This can result in orders of magnitude
more room to detect faults, see Section 5.

. Validation of the tests by explicitly using standard
decision-theoretic tools: the probabilities of false
alarm and detection, and their parametric plot via a
receiver operating characteristic (ROC) curve.

The sections of this paper continue as follows: We introduce
our notation and set out some general considerations that are
common to the routines we study. After that, we examine
how roundoff errors propagate through numerical routines
and develop fault-detection tests based on expected error
propagation. Next, we discuss the implementation of our
tests and explore their absolute and relative effectiveness via
simulation experiments. We close by offering conclusions
and discussing possible future research.

1.1 Notation

Matrices and vectors are written in uppercase and lower-
case roman letters, respectively; A> is the transpose of the
matrix A (conjugate transpose for complex matrices). Any
identity matrix is always I; context provides its dimension.
A real (respectively, complex) matrix A is orthogonal

(respectively, unitary) if AA> ¼ I. A square matrix is a
permutation if it can be obtained by reordering the rows of I.
The size of a vector v is measured by its p-norm jjvjjp, of
which the three most useful cases are

jjvjj1 ¼
X
i

jvij; jjvjj1 ¼ max
i
jvij jjvjj2 ¼

X
i

jvij2
 !1=2

:

The simplest norm on matrices is the Frobenius norm

jjAjjF ¼
 X

i;j

jaijj2
!1=2

:

Other matrix norms may be generated using the vector
p-norms, and they are computed as

jjAjj1¼max
i

X
j

jaijj; jjAjj1¼max
j

X
i

jaijj; jjAjj2¼�maxðAÞ:

The last is the largest singular value of A and is not trivial to
find. All other vector and matrix norms are computed in
time linear in the number of matrix elements. All the norms
differ only by factors depending only on matrix size and
may be regarded as equivalent; in this context, write the
unadorned jj � jj. The submultiplicative property holds for each
of these norms: jjAvjj � jjAjj jjvjj and jjABjj � jjAjj jjBjj. See
[12, Sections 2.2 and 2.3] or [13, Section 6.2] for more on all
these properties. The numerical precision of the underlying
hardware is captured by u, the difference between unity
and the next larger floating-point number (u ¼ 2:2�10ÿ16

for 64-bit IEEE floating point).

2 GENERAL CONSIDERATIONS

We are concerned with these linear operations:

. Product: find the product AB ¼ P , given A and B.

. QR decomposition: factor a square A as A ¼ QR,
where Q is an orthogonal matrix and R is upper
triangular.

. Singular value decomposition: factor a square A as
A ¼ UDV >, where D is diagonal and U , V are
orthogonal matrices.

. LU decomposition: factor A as A ¼ PLU with P a
permutation, L unit lower-triangular, U upper-
triangular.

. System solution: solve for x in Ax ¼ b when given A
and b.

. Matrix inverse: given A, find B such that AB ¼ I.

. Fourier transform: given x, find y such that y ¼Wx,
where W is the matrix of Fourier bases.

. Inverse Fourier transform: given y, find x such that
x ¼ nÿ1W>y where W is the n�n matrix of Fourier
bases.

We note that, because standard implementations of multi-
dimensional Fourier transform use one-dimensional trans-
form as a subroutine, a multidimensional transform will
inherit a finer-grained robustness by using a fault-tolerant
one-dimensional subroutine. In this case, fault tolerance
need only be implemented at the base level of the
computation. Alternatively, one could use appropriate
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postconditions at the top level. (e.g., the algorithm fft2,
given an input matrix X, produces a transform Y such that
Y ¼WXW .)

Table 1 summarizes the operations and the inputs and
outputs of the algorithms which compute them. Each of
these operations has been written to emphasize that some
relation holds among the subroutine inputs and its
computed outputs; we call this the postcondition. The
postcondition for each operation is given in Table 1. In
several cases, indicated in the table, this postcondition is a
necessary and sufficient condition (NASC) and, thus,
completely characterizes the subroutine’s task. (To see this,
consider, for example, inv: if its output B is such that
AB ¼ I, then B ¼ Aÿ1.) For the other operations, the
postcondition is only a necessary condition and valid
results must enjoy other properties as well—typically a
structural constraint like orthogonality. The additional
properties needed in this case are given in the table but
we do not check them as part of the fault test. (In the case of
lu, it is customary to store L and U in opposite halves of the
same physical matrix, so their structural properties are
automatically established.) In either case, identifying and
checking the postcondition provides a powerful way to
verify the proper functioning of the subroutine.

Before proceeding to examine these operations in detail,
we mention two general points involved in designing
postcondition-based fault detection schemes for other
algorithms. Suppose for definiteness that we plan to check
one m� n matrix. Any reasonable detection scheme must
depend on the content of each matrix entry, otherwise some
entries would not be checked. This implies that simply
performing a check (e.g., computing a checksum of an input
or output) requires OðmnÞ operations. Postcondition-based
fault detection schemes thus lose their attractiveness for
operations taking OðmnÞ or fewer operations (e.g., trace,
sum, and 1-norm) because it is simpler and more directly
informative to achieve fault-tolerance by repeating the
computation. (This is an illustration of the “little-oh rule”
of [14].) The second general point is that, although the
postconditions above are linearly-checkable equalities, they
need not be. For example, jjAjj2 ¼ �maxðAÞ is bounded by
functions of the 1-norm and the1-norm, both of which are
easily computed but not of linear form. One could test a
computation’s result by checking postconditions that in-
volve nonlinear functions of the inputs, expressed either as

equalities or as inequalities. None of the operations we
consider requires this level of generality.

Indeed, the postconditions considered in this paper
generically involve comparing two linear maps, which are
known in factored form

L1L2 � � �Lp ¼
?
R1R2 � � �Rq: ð1Þ

This check can be done exhaustively via n linearly
independent probes for an n� n system—which would
typically introduce about as much computation as recom-
puting the answer from scratch. On the other hand, a
typical fault to data fans out across the matrix outputs, and
a single probe would be enough to catch most errors:

L1L2 � � �Lpw ¼? R1R2 � � �Rqw ð2Þ

for some probe vector w.
For certain operations (solve, inv) such postcondition

checks are formalizations of common practice. Freivalds
[15] used randomized probes w to check multiplication.
This approach, known as result-checking (RC), is analyzed
in a general context by Blum and Kannan [16]; for further
analysis see [1], [14], [17]. Use of multiple random probes
can provide probabilistic performance guarantees almost as
good as the exhaustive scheme indicated in (1), without
performing all n probes.

Linear checks on matrix operations are also the basis
for the checksum-augmentation approach introduced by
Huang and Abraham [18] for systolic arrays, under the
name algorithm-based fault tolerance (ABFT). The idea
has since both moved outside its original context of
systolic array computation, and has also been extended to
LU decomposition [19], QR and related decompositions
[20], [21], SVD, FFT [22], [23], and other algorithms. The
effects of multiple faults, and faults which occur during
the test itself, have been explored through experiment
[24]. Fault location and correction, and use of multiple
probe vectors have also been studied in the ABFT context
[25], [26].

An earlier paper [20] uses roundoff error bounds to set
the detection threshold for one algorithm, the QZ decom-
position. Other work ([27], [28]) uses running error analysis
to derive methods for maintaining roundoff error bounds
for three algorithms. Running error analysis is a powerful
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technique [13, Section 3.3] with the potential to give
accurate bounds, but requires modifying the internals of
the algorithm: We have preferred to wrap existing algo-
rithms without modification. As we shall see, norm-based
bounds provide excellent error-detection performance
which reduces the need for running error analysis in many
applications. Error bounds have also been used to derive
input-independent tests for system solution [29]; the paper
cleverly builds in one round of iterative refinement both to
enable usable error bounds, and also to allow correction of
errors in the first computed solution. In contrast to the
above papers, our work emphasizes average-case bounds
and attempts to provide a comprehensive treatment of error
detection for many operators.

There are two designer-selectable choices controlling the
numerical properties of the fault detection system in (2): the
checksum weights w and the comparison method indicated
by ¼? . When no assumptions may be made about the factors
of (2), the first is relatively straightforward: the elements of
w should not vary greatly in magnitude so that results
figure essentially equally in the check. At the minimum, w
must be everywhere nonzero; better still, each partial
product L0p � � �Lpw and R0q � � �Lqw of (2) should not vary
greatly in magnitude.

For Fourier transforms, this yields a weak condition on
w: It should at least be chosen so that neither the real or
imaginary parts of w, nor those of its Fourier transform,
vary radically in magnitude. This rules out many simple
functions (like the vector of all ones) which exhibit
symmetry and have sparse transforms. For FFT checksum
tests, we generated a fixed test vector of randomly chosen
complex entries: independent and identically distributed
unit normal variates for both real and imaginary parts. The
ratios between the magnitude of the largest and smallest
elements of this w and its transform are about 200. We see in
Section 5.3 that this choice is far superior to the vector of all
ones and other elementary choices. For the matrix opera-
tions, on the other hand, little can be said in advance about
the factors (but, see [30]). We are content to let w be the
vector of all ones. Our implementation allows an arbitrary w
to be supplied by those users with more knowledge of
expected factors.

3 ERROR PROPAGATION

After the checksum vector, the second choice is the
comparison method. As stated above, we perform compar-
isons using the corresponding postcondition for each
operation. To develop a test that is roughly independent
of the matrices at hand, we use the well-known bounds on
error propagation in linear operations. In what follows, we
develop a test for each operation of interest. For each
operation, we first cite a result bounding the numerical
error in the computation’s output and, then, we use this
bound to develop a corollary defining a test which is
roughly independent of the operands. Those less interested
in this machinery might review the first two results and
skip to Section 4.

It is important to understand that the error bounds given
in the results are rigorous, but we use them qualitatively to
determine the general characteristics of roundoff in an

algorithm’s implementation. The upper bounds we cite are
based on various worst-case assumptions (see below) and
they typically predict roundoff error much larger than
practically observed. In the fault tolerance context, using
these bounds uncritically would mean setting thresholds
too high and missing some fault-induced errors. Their value
for us, and it is substantial, is to indicate how roundoff error
scales with different inputs. (See [12, Section 2.4.6], [29], and
Section 5 for more on this outlook.) This allows fault
tolerant routines to factor out the inputs, yielding perfor-
mance that is more nearly input-independent. Of course,
some problem-specific tuning will likely improve perfor-
mance. Our goal is to simplify the tuning as much as
possible.

The dependence of error bounds on input dimension, as
opposed to input values, is subtler. This is determined by
the way individual roundoff errors accumulate within a
running algorithm. Several sources of estimation error exist:

. Roundoff errors accumulate linearly in worst case,
but cancel in average case [13, Section 2.6], [31,
Section 14].

. Error analysis methods often have inaccuracies or
artifacts at this level of detail (e.g., [13, note to
Theorem 18.9]). In particular, the constants will vary
depending on which matrix norm is used.

. Carefully implemented algorithms decompose sum-
mations so that roundoff errors accumulate slowly
[13, Section 3.1].

. Some hardware uses extended precision to store
intermediate results [13, Section 3.1].

For these reasons, numerical analysts generally place little
emphasis on leading constants that are a function of
dimension. One heuristic is to replace the dimension-
dependent constants in the error bound by their square
root [13, Section 2.6], based on a central limit theorem
argument applied to the sum of individual roundoff errors.
(The heuristic is justified on theoretical grounds when a
randomized detection algorithm [14, Algorithm 2.1.1] is
used under certain conditions.) Because of these uncertain-
ties, we give tests involving dimensional constants only
when the bound is known to reflect typical behavior.

Result 1 ([12] Section 2.4.8). Let P̂P ¼ multðA;BÞ be
computed using a dot-product, outer-product, or gax-
py-based algorithm. The error matrix E ¼ P̂P ÿAB
satisfies

jjEjj1 � njjAjj1jjBjj1u; ð3Þ

where n is the dimension shared by A and B.

Corollary 1. An input-independent checksum test for mult is

d ¼ P̂PwÿABw ð4Þ
jjdjj1=ðjjAjj1jjBjj1jjwjj1Þ <

>
�u; ð5Þ

where � is an input-independent threshold.

The test is expressed as a comparison (indicated by the <
>

relation) with a threshold; the latter is a scaled version of
the floating-point accuracy. If the discrepancy is larger than
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�u, a fault would be declared, otherwise the error is
explainable by roundoff.

Proof. The difference d ¼ Ew so, by the submultiplicative
property of norms and Result 1,

jjdjj1 � jjEjj1jjwjj1 � njjAjj1jjBjj1jjwjj1u

and the dependence on A and B is removed by dividing
by their norms. The factor of n is unimportant in this
context, as noted in the remark beginning the section. tu

Result 2 ([13], Theorems 18.4, 18.9). Let ðQ̂Q; R̂RÞ ¼ qrðAÞ be
computed using a Givens or Householder QR decom-
position algorithm applied to the m�n matrix A, m � n.
The backward error matrix E defined by AþE ¼ Q̂QR̂R
satisfies

jjEjjF � �m2n jjAjjFu; ð6Þ

where � is a small constant for any matrix A.

Corollary 2. An input-independent checksum test for qr is

d ¼ Q̂QR̂RwÿAw ð7Þ
jjdjjF=ðjjAjjF jjwjjF Þ <

>
�u; ð8Þ

where � is an input-independent threshold.

Proof. Let d ¼ Q̂QR̂RwÿAw; then d ¼ Ew, where E is the
error matrix bounded in Result 2. We claim that an
input-independent checksum test for qr is

jjdjjF=ðjjAjjF jjwjjF Þ <
>
�u: ð9Þ

Indeed, by the submultiplicative property and Result 2,

jjdjjF � jjEjjF jjwjjF � �m2n jjAjjF jjwjjFu

and the dependence on A is removed by dividing by its
norm. The constant � is independent of A, the dimen-
sional constants are discarded, and the claim follows. tu

To convert this test, which uses Frobenius norm, into one
using the1-norm, recall that these two norms differ only by
constant factors which may be absorbed into � .

Result 3 ([12], Section 5.5.8). Let ðÛU; D̂D; V̂V Þ ¼ svdðAÞ be
computed using a standard singular value decomposi-
tion algorithm. The backward error matrix E defined by
Aþ E ¼ ÛUD̂DV̂V > satisfies

jjEjj2 � � jjAjj2u; ð10Þ

where � is a small constant for any matrix A.

Corollary 3. An input-independent checksum test for svd as
applied to any matrix is

d ¼ ÛUD̂DV̂V >wÿAw ð11Þ
jjdjj1=ðjjAjj1jjwjj1Þ <

>
�u; ð12Þ

where � is an input-independent threshold.

Proof. Let d ¼ ÛUD̂DV̂V >wÿAw; then d ¼ Ew, where E is the
error matrix bounded in Result 3. We claim that an
input-independent checksum test for svd is

jjdjj2=ðjjAjj2jjwjj2Þ <
>
�u: ð13Þ

Indeed, by the submultiplicative property and Result 3,

jjdjj2 � jjEjj2jjwjj2 � � jjAjj2jjwjj2u

and the dependence on A is removed by dividing by its

norm. The constant � is neglected, and the claim follows.

This test, which uses 2-norm, may be converted into one

using the 1-norm as with qr. tu
The test for SVD has the same normalization as for QR

decomposition.
For some of the remaining operations, we require the

notion of a numerically realistic matrix. The reliance of

numerical analysts on some algorithms is based on the

rarity of certain pathological matrices that cause, for

example, pivot elements in decomposition algorithms to

grow exponentially. Note that matrices of unfavorable

condition number are not less likely to be numerically

realistic. (Explaining the pervasiveness of numerically

realistic matrices is “one of the major unsolved problems

in numerical analysis” [13, p. 180] and we do not attempt to

summarize research characterizing this class.) In fact, even

stable and reliable algorithms can be made to misbehave

when given such unlikely inputs. Because the underlying

routines will fail under such pathological conditions, we

may neglect them in designing a fault-tolerant system: Such

a computation is liable to fail even without faults.

Accordingly, certain results below must assume that the

inputs are numerically realistic to obtain usable error

bounds.

Result 4 ([12], Section 3.4.6). Let ðP̂P ; L̂L; ÛUÞ ¼ luðAÞ be

computed using a standard LU decomposition algorithm

with partial pivoting. The backward error matrix E

defined by Aþ E ¼ P̂P L̂LÛU satisfies

jjEjj1 � 8n3� jjAjj1u; ð14Þ

where the growth factor � depends on the size of certain

partial results of the calculation.

Trefethen and Bau [31, Section 22] describe typical behavior

of � in some detail, finding that it is typically of order
ffiffiffi
n
p

for

numerically realistic matrices. We note in passing that this

is close to the best possible bound for the discrepancy,

because the error in simply writing down the matrix A must

be of order jjAjju. The success of numerical linear algebra is

in finding a way to factor realistic matrices A while

incurring only a small penalty � beyond this lower bound.

Corollary 4. An input-independent checksum test for lu as

applied to numerically realistic matrices is

d ¼ P̂P L̂LÛUwÿAw ð15Þ
jjdjj1=ðjjAjj1jjwjj1Þ <

>
�u; ð16Þ

where � is an input-independent threshold.

Proof. We have d ¼ Ew so, by the submultiplicative

property of norms and Result 4,

jjdjj1 � jjEjj1jjwjj1 � 8n3� jjAjj1jjwjj1u:
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As before, the factor of 8n3 is unimportant in this

calculation. For numerically realistic matrices, the

growth factor � is also negligible, and the indicated test

is recovered by dividing by the norm of A. tu
Result 5 ([12], Section 3.4.6). Let x̂x ¼ solveðA; bÞ be

computed using a standard LU decomposition algorithm

with partial pivoting, and back-substitution. The back-

ward error matrix E defined by ðAþ EÞx̂x ¼ b satisfies

jjEjj1 � 8n3� jjAjj1u ð17Þ

with � as in Result 4.

In this case, the result is itself a vector: this vector is

evaluated directly within the postcondition Ax ¼ b, omit-

ting a checksum operation.

Corollary 5. An input-independent test for solve as applied to

numerically realistic matrices is

d ¼ Ax̂xÿ b ð18Þ
jjdjj1=ðjjAjj1jjx̂xjj1Þ <

>
�u; ð19Þ

where � is an input-independent threshold.

Proof. We have d ¼ ÿEx̂x so, by the submultiplicative

property of norms and Result 5,

jjdjj1 � jjEjj1jjx̂xjj1 � 8n3� jjAjj1jjx̂xjj1u:

As before, leading factors are dropped and the indicated

test is recovered by dividing. tu
There are several ways to compute an inverse matrix,

typically based on an initial factorization A ¼ PLU . The

LINPACK xGEDI, LAPACK xGETRI, and Matlab inv

(before and after version 6.0) all use the same variant which

next computes Uÿ1 and then solves BPL ¼ Uÿ1 for B.

Result 6 ([13], Section 13.3.2). Let B̂B ¼ invðAÞ be computed

as just described. Then, the left residual satisfies

jjB̂BAÿ Ijj1 � 8n3� jjB̂Bjj1jjAjj1u ð20Þ

with � as in Result 4.

Proof. The cited proof derives the elementwise bound

jB̂BAÿ Ij � 2njB̂Bj jLj jU ju;

where jMj is the matrix of absolute values of the entries

of M, and the inequality holds elementwise. Just as for

lu, one can bound lij � 1 and uij � �jjAjj1, which allows

conversion of the elementwise bound into the norm

bound at the end of Section 13.3.2. tu

Corollary 6. An input-independent checksum test for inv as

applied to numerically realistic matrices is

d ¼ B̂BAwÿ w ð21Þ
jjdjj1=ðjjAjj1jjB̂Bjj1jjwjj1Þ <

>
�u; ð22Þ

where � is an input-independent threshold.

Proof. Using the submultiplicative property,

jjdjj1 ¼ jjðB̂BAÿ IÞwjj1 � jjB̂BAÿ Ijj1 jjwjj1
and the test follows on substituting Result 6. tu

We remark that this bound on discrepancy, larger than that
for lu, is the reason matrix inverse is numerically unstable.
The factor jjAjj jjAÿ1jj is the condition number �ðAÞ.

We close this section with tests for Fourier transform
operations. The n� n forward transform matrix W contains
the Fourier basis functions; recall that W=

ffiffiffi
n
p

is unitary.
Following convention, the forward transform here multi-
plies by W , while the inverse preserves scale by using
nÿ1W>.

Result 7. Let ŷy ¼ fftðxÞ be computed using a decimation-
based fast Fourier transform algorithm; let y ¼Wx be the
infinite-precision Fourier transform. The error vector e ¼
ŷyÿ y satisfies

jjejj2 � 5n log2 n jjxjj2u: ð23Þ

Proof. See [13], Theorem 23.2, remembering that
jjyjj2 ¼

ffiffiffi
n
p
jjxjj2. tu

Corollary 7. An input-independent checksum test for fft is

d ¼ ðŷyÿWxÞ>w ð24Þ
jdj=ðn log2 n jjxjj2jjwjj2Þ <

>
�u; ð25Þ

where � is an input-independent threshold.

Proof. This follows from Result 7 after neglecting the
leading constant. tu

In this case, we include the dependence on matrix size
because it is known to be accurate [13, p. 468]. Using a
similar result, we may also obtain bounds for ifft.

Corollary 8. An input-independent checksum test for ifft is

d ¼ ðx̂xÿ nÿ1W>yÞ>w ð26Þ
jdj=ðlog2 n jjyjj2jjwjj2Þ <

>
�u; ð27Þ

where � is an input-independent threshold.

Note that scaling by nÿ1 in ifft removes a factor of n from
the test’s normalization relative to fft.

4 IMPLEMENTING THE TESTS

It is straightforward to transform these results into
algorithms for error detection via checksums. The principal
issue is computing the desired norms efficiently from
inputs to, or results of, the desired calculation. For example,
in the matrix multiply, instead of computing jjAjj jjBjj, it is
more efficient to compute jjP̂P jj which equals jjABjj under
fault-free conditions. By the submultiplicative property of
norms, jjABjj � jjAjj jjBjj, so this substitution always
underestimates the upper bound on roundoff error, leading
to false alarms. On the other hand, we must remember that
the norm bounds are only general guides anyway. All that
is needed is for jjABjj to scale as does jjAjj jjBjj; the
unknown scale factor can be absorbed into � .
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Taking this one step further, we might compute jjP̂Pwjj as
a substitute for jjAjj jjBjj jjwjj. In fact, P̂Pw would often be
computed anyway as a means of checking the integrity of P̂P
later, so the result check would come at only OðnÞ
additional cost. On the other hand, the simple vector norm
runs an even greater risk of underestimating the bound,
especially if w is nearly orthogonal to the product, so it is
wise to use instead �jjwjj þ jjP̂Pwjj for some problem-
dependent � > 0. Extending this reasoning to the other
operations yields the comparisons in Table 2.

The tests all proceed from the indicated difference matrix
� by computing the norm

� ¼ jj�wjj; ð28Þ

scaling it by a certain factor �, and comparing to a
threshold. The matrix � is, of course, never explicitly
computed because it is more efficient to multiply w into the
factors comprising �. The naive test is the unnormalized
(� ¼ 1) comparison

T0 : �=jjwjj <> �u: ð29Þ

The other tests have input-sensitive normalization as
summarized in Table 2. First, the ideal test

T1 : �=ð�1jjwjjÞ <
>
�u ð30Þ

is the one recommended by the theoretical error bounds of
Section 3, but may not be computable using the values on
hand (e.g., for inv).

The other two tests are based on quantities computed by
the algorithm and may also be suggested by the reasoning
above. First, the matrix test

T2 : �=ð�2jjwjjÞ <
>
�u ð31Þ

involves a matrix norm (except for solve, fft, and ifft)
of computed algorithm outputs. When more than one
variant of the matrix test is available, we have chosen a
reasonable one. The vector test

T3 : �=ð�jjwjj þ �3Þ <
>
�u ð32Þ

involves a vector norm and is therefore more subject to false
alarms. A major advantage of T3 (see the �3 column in
Table 2) is that for the factorizations, it needs only jjAwjj
which is very simple to compute in the typical case when
algorithm inputs are already checksummed. We note that

the obvious vector test for inv uses jjB̂BAwjj, but since
B̂B ¼ invðAÞ, this test becomes almost equivalent to T0: We
suggest using the vector/matrix test shown in Table 2. The
ideal tests T1 for the Fourier transforms need only the norm
of the input, which is readily calculated, so other test
versions are omitted.

Clearly, the choice of which test to use is based on the
interplay of computation time and fault-detection perfor-
mance for a given population of input matrices. Because of
the shortcomings of numerical analysis, we cannot predict
that one test will significantly outperform another. The
experimental results reported in the next section are one
indicator of real performance and may motivate more
detailed analysis of test behavior.

5 RESULTS UNDER SIMULATED FAULTS

We describe the simulation setup, present results for the
matrix operations (mult, lu, svd, qr, and inv) under two
input-matrix distributions and, finally, show results for the
Fourier transform using various probe vectors w. These
simulations are intended to test the essential effectiveness of
the proposed checksum technique for fault tolerance, as
well as to sketch the relative behaviors of the tests described
above. Due to the special nature of the populations of test
matrices and the shortcomings of the fault insertion scheme,
these results should be taken as a good estimate of relative
performance and a rough estimate of ultimate absolute
performance.

5.1 Experimental Setup

In essence, a population of random matrices is used as input
to a given computation; faults are injected in half these
computations and a checksum test is used afterward to
attempt to identify the faulty computations. For the matrix
operations, random test matrices A of a given condition
number � are generated by the rule

A ¼ 10� UD�V
>: ð33Þ

The random matrices U and V are the orthogonal factors in
the QR factorization of two square matrices with entries that
are independent unit normal random variables. (They are
therefore random orthogonal matrices from the Haar
distribution [32].) The diagonal matrix D� is filled in by
choosing independent uniformly distributed random sin-
gular values, rescaled such that the largest singular value is
one and the smallest is 1=�. These matrices all have 2-norm

TURMON ET AL.: TESTS AND TOLERANCES FOR HIGH-PERFORMANCE SOFTWARE-IMPLEMENTED FAULT DETECTION 585

TABLE 2
Algorithms and Corresponding Checksum Tests



equal to unity; the overall scale is set by �, which is chosen
uniformly at random between -8 and +8. A total of 2N ,
64� 64 matrices is generated by independent draws from
the rule (33). Equal numbers of matrices for each � in
f21; . . . ; 220g are generated over the course of the 2N draws.
Vector inputs for fft have no concept of condition number
and they are generated by

v ¼ 10� ðu1 þ
ffiffiffiffiffiffiffi
ÿ1
p

u2Þ: ð34Þ
Here, � is as above, and u1 and u2 are vectors of n ¼ 64
independent unit normal variables.

Faults are injected in half of these runs (N of 2N total) by
changing a random bit of the algorithm’s state space at a
random point of execution. Specifically, the matrix algo-
rithms when given n�n inputs generally have n stages and
operate in place on an n� n matrix. The Fourier transform
has log2 n stages which operate in place on the n-length
vector. So, for testing, the algorithm is interrupted at a
random stage and its workspace perturbed by altering
exactly one bit of the 64-bit representation of one of the
matrix/vector entries a to produce a new entry, flipðaÞ. For
example, lu consists of application of n Gauss transforma-
tions. To inject a fault into lu, it is interrupted between two
applications of the transformation, and one entry of the
working matrix is altered via flip. If the entry is used in later
stages of the algorithm, then the fault will fan out across the
array; if not, only one element of L or U will be affected. We
modified the well-known algorithms of Press et al. [33]
because of their transparency, but similar results were

obtained from other implementations. For mult, we used
the standard inner product or “ijk” algorithm; for qr, inv,
lu, and fft, we used qrdcmp, gaussj, ludcmp, and
four1, all in double precision versions and running on
IEEE-754 compliant hardware.

For each random draw of algorithm inputs, our simula-
tion computes all four detection criteria (the left-hand sides
of (29) to (32)). This detection criterion is the function that a
fault-detecting algorithm computes and then compares to a
fixed threshold �u to decide whether to declare a fault. In
our simulations, this yields two populations of detection
criteria—under fault-free and faulty conditions—for each
combination of test and algorithm. Each population con-
tains N criterion values, one for each random selection of
input arguments.

5.2 Results: Matrix Operations

We begin to understand how the detection criterion affects
error rates by examining one test in detail. The upper-left
panel of Fig. 1 shows probability densities of the logarithm
(base 10) of the T1 detection criterion for qr under fault-free
(straight line) and faulty (crosses) conditions. (In this panel
only, the curves overlap and must be shown with different
zero levels; in all panels, the left scale is for the fault-free
histogram while the right scale is the faulty histogram.) The
fault-free curve is Gaussian in shape, reflecting accumu-
lated roundoff noise, but the faulty curve has criterion
values spread over a wide range due to the diverse sizes of
injected faults. A test attempts to separate these two
populations—for a given � , both False Alarms (roundoff
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errors tagged as data faults) and Detections (data faults
correctly identified) will be observed. The area under the
fault-free probability density curve to the right of a
threshold � equals the probability of false alarm, Pfa; area
under the faulty curve above � is Pd, the chance of detecting
a fault.

This panel also shows �� (dashed line), which is defined
to be the smallest tolerance resulting empirically in zero
false alarms, and �ub > �� (dash-dot line), the “worst-case”
theoretical error bound of Result 2. (We have conservatively
used � ¼ 10.) These threshold lines are labeled as described
above, but appear on the log scale at the value log10ð�uÞ.
The point is that use of an average-case threshold enables
detection of all the events lying between �� and �ub, while
still avoiding false alarms.

Different test mechanisms deliver different histograms,
and the best tests result in more separated populations. The
upper-right panel shows the naive T0 test for qr. This test
exhibits considerable overlap between the populations. Due
to incorrect normalization, errors are spread out over a
much greater range overall (about 30 orders of magnitude)
and the fault-free errors are no longer a concentrated clump
near log10ðuÞ � ÿ15:7. The lowest threshold which avoids

false alarms (��, dashed line) is now so large that it fails to
detect a large proportion of faults.

Of course, some missed fault detections are worse than
others since many faults occur in the low-order bits of the
mantissa and cause very minor changes in the matrix
element, of relative size

Erel ¼ jflipðxÞ ÿ xj=x: ð35Þ

Accordingly, a second set of density curves is shown in the
lower panels of Fig. 1. There, faults which cause a
perturbation of size less than Emin

rel ¼ 10ÿ10 are screened
from the fault-containing curve (the fault-free curve
remains the same). Removing these minor faults moves
experiments out of the far left of the fault-containing curve:
In some cases, these are experiments where the roundoff
error actually dominates the error due to the fault. Again, a
substantial range of experiments still exists above �� but
below �ub. As we shall see, these plots are typical of those
observed for other algorithms.

Characteristics of a test are concisely expressed using the
standard receiver operating characteristic (ROC) curve. This
is just a parametric plot of the pair ðPfa; PdÞ, varying � to
obtain a curve which illustrates the overall performance of
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the test—summarizing the essential characteristics of the

interplay between densities seen in Fig. 1. Large �

corresponds to the corner where Pfa ¼ Pd ¼ 0; small �

yields Pfa ¼ Pd ¼ 1. Intermediate values give tests with

various accuracy/coverage attributes. See Figs. 2 and 3. In

these figures, T0 is the line with square markers and T3 is

marked by upward pointing triangles; T0 lies below T3. T2

is shown with left pointing triangles, and T1, the optimal

test, with asterisks; these two tests nearly coincide. We use

� ¼ 0:001 in T3.
BecauseN independent runs are used to estimate bothPfa

and Pd, the standard error for either is ðP ð1ÿ P Þ=NÞ1=2: the
standard deviation of N averaged 0/1 variables [34, p. 107].
Thus, the standard error of an estimate P̂P of Pd, based on N
runs, may be estimated as ðP̂P ð1ÿ P̂P Þ=NÞ1=2 [34, p. 131]. For
Figs. 2 and 3, we used N ¼ 20; 000 and curves have
confidence bounds better than 0.005.

As foreshadowed by qr in Fig. 1, the ROCs of Fig. 2 show
that some faults are so small they cannot be reliably identified
after the fact. This is manifested by curves that slowly rise, not
attaining Pd ¼ 1 until Pfa ¼ 1 as well. Therefore, we show a
second group of ROCs (Fig. 3). In this set, faults which cause a

perturbation less than Emin
rel ¼ 10ÿ10, about 30 percent of all

faults, are screened from the results entirely. This is well
above the accuracy of single-precision floating point and is
beyond the precision of data typically obtained by scientific
experiment, for example. These ROCs are informative about
final fault-detection performance in an operating regime
where such a loss of precision in one number in the algorithm
working state is acceptable.

We may make some general observations about the
results. Clearly, T0, the unnormalized test, fares poorly in
all experiments. Indeed, for inv, the correct normalization
factor is large and T0 could only detect some faults by
setting an extremely low � . This illustrates the value of the
results on error propagation that form the basis for the
normalized tests. Generally speaking,

T0� T3 < T2 � T1: ð36Þ

This confirms the theory in which T1 is the ideal test and
the others approximate it. In particular, T1 and T2 are quite
similar because generally, only an enormous fault can
change the norm of a matrix—these cases are easy to detect.
And the vector test T3 suffers relative to the two matrix
tests, losing about 3 to 10 percent in Pd, because the single
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vector norm is sometimes a bad approximation to the
product of matrix and vector norms used in T1 and T2.
However, we found that problem-specific tuning of �
allows the performance of T3 to virtually duplicate that of
the superior tests.

To further summarize the results, we note that the most
relevant part of the ROC curve is when Pfa � 0; we may in
fact be interested in the value P �, defined to be Pd when
Pfa ¼ 0. This value is summarized for these experiments in
Table 3, as the fault screen Emin

rel is varied. (Table values for
Emin
rel ¼ 0 and 10ÿ10 can in fact be read from the ROC curves,

Figs. 2 and 3.) Standard errors, shown in parentheses, are
figured based on the experiment sample size as described
above. This shows that for this set of inputs, and this fault
injection mechanism, 99 percent coverage appears for T1
and T2 at approximately Emin

rel ¼ 10ÿ12; this level of
performance is surely adequate for most scientific compu-
tation. Also tabulated is the threshold value �� at which P �

is attained; this is of course multiplied by u ¼ 2:2�10ÿ16

when used in the threshold test. In each case, the value is
reported for the test without normalization by any leading
polynomial involving matrix dimension. In each test, the
p ¼ 1 norm (the maximum row sum of a matrix) was used,
and the checksum vector had all ones and jjwjj1 ¼ 1. The
low �� demonstrates that significant cancellation of errors
occurs.

Table 4 is compiled from similar experiments using a
worst-case matrix population of slightly perturbed versions
of the Matlab “gallery” matrices. This is a worst-case
population because it contains many members that are
singular or near-singular (17 of the 40 gallery matrices used
have condition number greater than 1010), as well as

members designed as counterexamples or hard test cases
for various algorithms. Only N ¼ 800 tests on this popula-
tion were run because of the smaller population of gallery
matrices: standard errors are larger, about 0.02. Note also
that the choice of gallery matrices is arbitrary so the
sampling bias probably dominates the standard errors in
these results. In worst-case—and no practical application
should be in this regime—coverage drops to about 60 to
90 percent. This gives an indication of the loss in fault-
detection performance incurred by a numerically ill-posed
application. Even in this case we see that significant
cancellation of errors occurs, and the �� values do not
change much.

5.3 Results: Fourier Transform

In related simulations, we examine the performance of tests
for the Fourier transform. In addition to the randomized
weight vector w1 defined at the end of Section 2, we also
used a deterministic vector w2 with real and imaginary part
both equal to

cosð4�ðkÿ n=2Þ=nÞ; k ¼ 0; 1; . . . ; nÿ 1: ð37Þ

This is a half-period of a cosine and it exhibits no particular
symmetry in the Fourier transform. However, the ratio
between the largest and smallest elements of the transform
of w2 is larger by a factor of 10 than w1. We also use the
conservation of energy (Parseval) postcondition

y ¼ fftðxÞ¼)jjyjj2 ¼
ffiffiffi
n
p
jjxjj2 ð38Þ

to define a related test for ŷy ¼ fftðxÞ

ðjjxjj2 ÿ nÿ1=2jjŷyjj2Þ=jjxjj2 <
>
�u: ð39Þ

This Parseval test has been normalized to reflect scaling of
the residual by the input’s magnitude.

The ROC curve in Fig. 4 summarizes performance of
these tests (N ¼ 20; 000 samples implies standard errors
better than 0.005). The naive T0 test has poor performance,
as observed earlier. The Parseval test and the w2 checksum
test have about the same performance, but both are clearly
bested by the w1 checksum test. This ranking is repeated in
Table 5, which shows P � for various error screens. The w1

checksum test is able to detect all faults larger than 10ÿ11.
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The large gap between �� and the theoretical threshold
setting �ub (from Result 7) illustrates again how much can be
gained from an average-case outlook. For fft, the observed
scaling of the error is known, both as a function of input
magnitude and input dimension, but the multiplicative
constant is not.

6 CONCLUSIONS AND FUTURE WORK

Faults within certain common computations—computa-
tions which, in some cases, dominate application run
time—can be detected by exploiting properties their out-
puts must satisfy. Once detected at the subroutine level, the
subroutine can be retried, or an exception raised to be
caught by a higher level of the fault-tolerance system
software. Following earlier work, we define tests for eight
Fourier and linear-algebraic floating-point operations by
checking that the computed quantities satisfy a necessary
condition, implied by the form of the operation, to within a
certain tolerance. Theoretical results bounding the expected
roundoff error in a given computation provide tests which
generally work by comparing the norm of a checksum-
difference vector, scaled according to algorithm inputs, to a
threshold.

For each operation, a family of readily computable tests
is easy to define and implement (see Table 2 and (29) to
(32)). The tests have different time/performance tradeoffs.
The key question for a fault tolerance practitioner is to set
the threshold to achieve the right tradeoff between correct
fault detections and false alarms. Because of the imprecision
inherent in the error bounds, theoretical results can only
give an indication of how expected error scales with
algorithm inputs; the precise constants for best performance
must in general be determined empirically for a given
algorithm implementation.

In our simulation tests, the observed behavior of these
tests is in good agreement with theory. All the linear-
algebraic operations tested here (mult, qr, svd, lu, and
inv) admit tests that are effective in detecting faults larger
than 10ÿ10 at well above the 99 percent level on a broad
range of matrix inputs. For factorizations, the easy-to-
compute T3 (vector-norm) test gives performance within 1
to 3 percent of the more complex tests. The naive
unnormalized test fares poorly in all tests. For fft, a
checksum test with randomly chosen weights also performs

very well, detecting all faults larger than 10ÿ11 and clearly
outperforming the Parseval-based test. Finally, the simula-
tion results illustrate that conventional error bounds, if
followed uncritically, can result in tolerances too high by
several orders of magnitude for typical matrix inputs. More
faults can be detected by using realistic thresholds.

Because the tests may be implemented as wrappers
around the overall computation, they may be used with
little modification in any high-performance package. For
example, our implementation consisted of a set of wrappers
around various ScaLAPACK and FFTW subroutines. Our
choice of checksum tests was based on computational cost;
for most operations we were able to perform the ideal test,
but in some cases (such as mult) we employed an
approximate test. We tested our implementation both by
comparing the results with those generated by Matlab
computations and, in the case of fft, by use of simulated
fault injection at the granularity of machine instructions. In
these tests we observed general agreement with theory. For
details of these results, see [35].

As a final note, we observe that other common
subroutines, such as those involving sorting, order statis-
tics, and numerical integration, also require more than
OðnÞ time and are candidates for fault-detecting versions.
Additionally, a multiple-checksum fault-detection scheme
would help to raise coverage if this is deemed necessary for
some applications.
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