
Fine-grained Policy-driven I/O Sharing for Burst Buffers
Ed Karrels∗

University of Illinois Urbana
Champaign

Lei Huang∗
Texas Advanced Computing Center

Yuhong Kan
The University of Texas at Austin

Ishank Arora
The University of Texas at Austin

Yinzhi Wang
Texas Advanced Computing Center

Daniel S. Katz
University of Illinois Urbana

Champaign

William D. Gropp
University of Illinois Urbana

Champaign

Zhao Zhang
Rutgers University

ABSTRACT
A burst buffer is a common method to bridge the performance gap
between the I/O needs of modern supercomputing applications and
the performance of the shared file system on large-scale supercom-
puters. However, existing I/O sharing methods require resource
isolation, offline profiling, or repeated execution that significantly
limit the utilization and applicability of these systems. Here we
present ThemisIO, a policy-driven I/O sharing framework for a
remote-shared burst buffer: a dedicated group of I/O nodes, each
with a local storage device. ThemisIO preserves high utilization by
implementing opportunity fairness so that it can reallocate unused
I/O resources to other applications. ThemisIO accurately and effi-
ciently allocates I/O cycles among applications, purely based on
real-time I/O behavior without requiring user-supplied information
or offline-profiled application characteristics. ThemisIO supports a
variety of fair sharing policies, such as user-fair, size-fair, as well
as composite policies, e.g., group-then-user-fair. All these features
are enabled by its statistical token design. ThemisIO can alter the
execution order of incoming I/O requests based on assigned to-
kens to precisely balance I/O cycles between applications via time
slicing, thereby enforcing processing isolation. Experiments using
I/O benchmarks show that ThemisIO sustains 13.5–13.7% higher
I/O throughput and 19.5–40.4% lower performance variation than
existing algorithms. For real applications, ThemisIO significantly
reduces the slowdown by 59.1–99.8% caused by I/O interference.

ACM Reference Format:
Ed Karrels∗, Lei Huang∗, Yuhong Kan, Ishank Arora, Yinzhi Wang, Daniel
S. Katz, William D. Gropp, and Zhao Zhang. 2023. Fine-grained Policy-
driven I/O Sharing for Burst Buffers. In The International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’23),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3581784.3607041

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0109-2/23/11.
https://doi.org/10.1145/3581784.3607041

Figure 1: Time-to-solution comparison of five applications
using a remote burst buffer. Baseline = measurements with
exclusive access to the burst buffer. Shared = measured with
a background I/O benchmark job running.

1 INTRODUCTION
High-performance computing (HPC) architects have deployed burst
buffers on supercomputers to bridge the I/O gap between compute
and storage by absorbing bursty I/O. However, when burst buffers
are shared among applications, researchers have observed I/O in-
terference [9, 15, 18, 28], where one application is slowed down by
the I/O of other applications.

To illustrate this, we run a set of five applications in a controlled
environment with an in-house remote-shared burst buffer using
two nvdimm nodes on the Frontera supercomputer. Each node
is equipped with a 6.2 TB Intel Optane persistent memory. We
first measure the baseline performance of each application making
exclusive use of the burst buffer, then wemeasure each application’s
runtime with a background I/O benchmark job, which is 3–173%
longer than the baseline, as shown in Figure 1.

The root cause of I/O interference is that today’s production
systems generally process I/O requests in a first-in-first-out (FIFO)
manner, which means that highly concurrent and bursty I/O traffic
from one application can saturate the I/O system’s queue, then block
the I/O of another application for a period of time. The amount of
the slowdown depends on the state of the queue when I/O requests
enter; specifically, how many I/O requests from one application are
ahead of the new requests from the other application.

Computer scientists have proposed various ideas to enable effi-
cient I/O sharing [9, 12, 15, 16, 19, 23] . However, these solutions
require prior knowledge of the application’s I/O behavior to enable
*Equal contributions to this work

This work is licensed under a Creative Commons Attribution International
4.0 License.

https://doi.org/10.1145/3581784.3607041
https://doi.org/10.1145/3581784.3607041
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607041&domain=pdf&date_stamp=2023-11-11

fair-sharing of I/O resource. E.g., Gift [19] assumes applications are
repeatedly run, it uses a throttle-and-reward system to maximize
I/O bandwidth by relaxing the fairness window. This throttled ex-
ecution in Gift may introduce a unbounded delay. TBF [23] and
CARS [16] require users to supply the I/O throughput of applica-
tions, then they statically allocate sufficient I/O resource to meet
the requirement. Because I/O workload can vary during an applica-
tion’s execution, a static allocation can lead to wasted I/O resources.
These systems cannot dynamically adjust I/O resource allocations
based on the real-time I/O requirement for new applications, or
even existing applications with new configurations, e.g., running
at a larger scale.

To address the I/O interference issue in burst buffer systems and
to enable efficient and dynamic I/O resource sharingwithflexible
policies, we have designed, built, and tested ThemisIO. To ensure
ThemisIO is always operating with maximal I/O throughput,
it implements opportunity fairness, meaning that fairness is only
enforced when the overall I/O requests received by the I/O system
exceeds its capacity. While using ThemisIO when the I/O system
is partially loaded, applications will get the same amount of I/O
resources as they would when running without ThemisIO (see
§5.3.1). Thus, the delay of an applications due to enforced fairness
is bounded, as ThemisIO guarantees the assigned I/O resources for
each application are no less than its fair share as specified in a policy
(see §5.5). We have designed a statistical, token-based strategy
for time-sliced sharing, which offers every I/O-active application
an opportunity for fair-sharing, unlike previous work that uses
a mandatory I/O bandwidth assignment. To enable ThemisIO to
dynamically adjust I/O resources to applications based on their
real-time workloads, we embed job-related information, such as job
id, user id, and job size, in the I/O request. ThemisIO can allocate
or reclaim tokens based on the number of I/O requests from each
user, each job, or each group (see §5.4). This token-based design
also makes ThemisIO flexible in sharing polices. For example,
ThemisIO can assign the same number of tokens to each user to
achieve primitive sharing policies, such as user-fair (i.e., I/O cycles
are evenly split across users.) It can also assign an appropriate
number of tokens to enable composite policies such as user-then-
job-fair, i.e., the I/O cycles are evenly split across users, then for
each user, the allocated cycles are further evenly split among their
jobs (see §5.3.2).

To make ThemisIO compatible with existing supercomputing
applications, we implement a POSIX-compliant interface, so appli-
cations can take advantage of ThemisIO as a tradition file system;
users do not have to make changes to their code to use ThemisIO.

We have integrated ThemisIO with an in-house burst buffer
system and used I/O benchmarks and five real-world applications to
examine the efficacy of the ThemisIO design. Our results show that
ThemisIO is efficient, as it achieves the hardware I/O throughput
limit, which is ∼22 GB/sec per I/O server combining read and write.
Global fairness can be preserved with a controlled delay, which
is negligible compared to the time-to-solution of jobs (see §5.6).
The sharing enabled by ThemisIO is more efficient and stable than
that of existing frameworks GIFT and TBF. With ThemisIO, the
sustained I/O throughput of benchmarks is 13.5–13.7% higher than
when using the GIFT and TBF algorithms, and the I/O throughput
variation in I/O sharing is 19.5–40.4% lower with ThemisIO.

For real applications, running a 64-node NAMD job with a back-
ground I/O benchmark job is 37.7% faster with ThemisIO size-fair
policy than that of FIFO. Compared to the baseline with exclusive
I/O resource access, the size-fair policy is 0.1% slower while the
FIFO policy is 60.3% slower, which is a ∼600x reduction in the per-
formance slowdown due to I/O interference. Across the applications
in §5.5, ThemisIO size-fair reduces the slowdown by 59.1–99.8%
compared to FIFO.

The contributions of this paper are:
• the statistical token-based time sharing design of ThemisIO,
which can flexibly support various upstream sharing policies,

• the global fairness enforcement algorithm on multiple I/O
servers

• the design of primitive and composite I/O sharing policies,
and

• the open source implementation of ThemisIO (https://github.
com/bbThemis/ThemisIO).

The rest of the paper is structured as follows. Section 2 provides
background on modern supercomputing applications and states the
need and requirements of a policy-driven I/O sharing system. The
foundational statistical token is presented in §3. We then discuss the
system design and implementation in §4 and present experiments
and their results in §5. Existing I/O sharing work is summarize and
compared to ThemisIO in §6. Finally, we conclude and envision
future work in §7.

2 BACKGROUND AND MOTIVATION
In this section, we first review some modern supercomputing ap-
plications and present a suite that we have selected to drive the
design of ThemisIO, then discuss the motivation for I/O sharing.

2.1 Background
In addition to traditional numerical simulation applications, such
as WRF (Weather Research and Forecasting) [25] and NAMD (scal-
able molecular dynamics) [22], researchers now also use a big
data approach (e.g., parallel scripting and MapReduce) and deep
learning tools to conduct disciplinary research. Researchers also
train neural networks for image classification, object detection, and
scientific literature analysis. Some notable models ResNet [7], Mask
R-CNN [6], and BERT [4]. Those models are being actively applied
to research fields from astronomy to zoology [1, 2, 13].

These diverse applications, run daily on supercomputers, use I/O
libraries such as MPI-IO [26, 27], HDF5 [5], and POSIX IO. When
running at large scale, some individual executions can cause file
system saturation and unresponsiveness. To absorb the bursty I/O
workload, supercomputer architects have deployed burst buffer sys-
tems on supercomputers, such as the Cray DataWarp on NERSC’s
Cori and DDN Infinite Memory Engine (IME) on the OSC Pitzer
and Owens clusters. The system we use here, Frontera, features 16
compute nodes that each have ∼5.4 TB of Intel Optane memory,
configured as 2.1 TB memory extension and 3.3 TB local storage.

There are generally two types of burst buffers. In a node-local
burst buffer, a storage device such as an SSD is attached to each
compute node, such as the NVDIMM nodes on Frontera. ThemisIO
is designed for the second type, remote-shared burst buffer, where
storage devices are attached to a number of dedicated I/O nodes,

2

https://github.com/bbThemis/ThemisIO
https://github.com/bbThemis/ThemisIO

such as DataWarp on Cori. In both cases, compute nodes and I/O
nodes are connected via a high-speed interconnect, e.g., InfiniBand.

2.2 Motivation
Most of today’s supercomputers provide processing isolation for
computing resources by granting exclusive access to compute nodes.
However, such isolation does not exist in I/O resources, which
causes problems. In this section, we discuss these problems in detail
and provision a multi-tenant I/O framework to address I/O sharing
challenges.

2.2.1 State of the Practice and Problems. From our daily experience
of operating HPC systems at multiple institutions, we have noticed
cases where the I/O of a small job can dominate the systems I/O
resources due to its high frequency and high volume. The root
causes of this phenomena are that 1) the I/O queue is packed with
requests from the small job and the I/O system processes them
in a FIFO way, and 2) the file system’s throughput is insufficient.
Depending on when other I/O requests arrive in the I/O queue, the
small job can indefinitely block the I/O requests of all other jobs. If
we define fairness of I/O resources to be proportional to a job’s size,
i.e., the number of compute nodes, this unfair sharing of the I/O
resource certainly does not reflect the priority of the jobs.

In some other cases, the I/O workload of a job can be heavy in
metadata access, which eventually saturate the metadata server.
While this blocks other jobs from accessing metadata, the data
servers, such as OSTs in Lustre, may be idle during this process.
Again, it is the FIFO processing of I/O requests that causes this
huge resource waste. Although using burst buffers can absorb
the bursty workload to some extent, the problem still exists as long
as the I/O requests are processed in a FIFO manner.

It is challenging, if not impossible, for today’s I/O systems
to provide a quality of service (QoS) guarantee. For example,
an I/O and shared file system that can provide 10M IOPS typically
cannot guarantee 1M IOPS to each of ten jobs on the machine,
regardless of the job’s size. One solution to this is to disassociate
I/O control from actual processing. With rich job metadata, control
logic can alter the processing order of the I/O requests to enforce
defined sharing policies and achieve fairness.

Those practices and problems motivate ThemisIO. Clearly, there
is a critical need for an I/O sharing framework that can 1) isolate I/O
request processing so one job does not block others, 2) assign idle
I/O cycles to jobs with high I/O demand when possible to achieve
high utilization, and 3) provide flexible sharing policies to enforce
certain fairness, as discussed in detail in the next subsection.

2.2.2 Definition of Fairness. There are many ways to define fair-
ness. Allocating I/O resources in proportion to job size is one type
of fairness, which we refer to as size-fair. Evenly splitting I/O
resources among all active jobs is another type of fairness, and we
refer to this as job-fair. Splitting I/O resources among all users
regardless of the number of jobs each user is running is a third type
of fairness, which we call user-fair.

These are just three examples of primitive fairness definitions.
One can argue that assigning more I/O resources to prioritized jobs
is fair, for example, during the hurricane season where there is an

urgent need for computing resources to forecast potential disasters;
we refer to this as priority-fair.

Some cases may need composite sharing policies, for example,
to first split I/O resources evenly among users, then to split a user’s
resources in proportion to their job sizes. We call this user-then-
size-fair. There could also be group-then-size-fair and group-
then-user-fair policies.

The ThemisIO design can support all of these sharing policies
with a single parameter, so that system administrators can specify
the sharing policy when starting ThemisIO. Internally, ThemisIO
uses a token-based design to enable time-sliced sharing of I/O re-
sources. It maps the above sharing polices and fairness definitions
to token management, where I/O requests are processed with cor-
responding job tokens, and tokens are recycled after requests are
processed. This means that sharing policies can be implemented
by assigning a number of tokens to each job. The details of the
token-based design is discussed in §3.

3 SHARING VIA STATISTICAL TOKENS
We designed ThemisIO to be a generic I/O sharing system, in the
sense that it can flexibly support primitive sharing policies as
well as composite sharing policies. For primitive policies, e.g.,
job-fair, user-fair, size-fair, and priority-fair, we assign an
identical number of I/O cycles among jobs, users, or in proportion
to the node count or the job priority within a time unit. We refer
the notion of job, user, and size as sharing entities.

Leveraging the classic token mechanism, allocating an appropri-
ate number of tokens to each sharing entity is a straight-forward
and effective approach to enable primitive polices, as illustrated in
Figure 2(a). In Figure 2(a), we assign two tokens to each job to enable
job-fair sharing. However, this token-based approach is limited in
enabling composite policies, e.g., user-then-job-fair, where we want
to evenly assign I/O resource among users, then enforce job-fair
sharing within the scope of a user. A naive approach to enable this
composite policy would to have two tiers of token queues, as shown
in 2(b), each representing the sharing entities of users and jobs that
belong to a user. With a composite sharing policy that involves
𝑁 layers of sharing entity, we have to maintain 𝑁 tiers of token
queues and actual number of token queues is exponential to 𝑁 ,
which significantly limits the scalability of the token mechanism. In
addition, managing the token queues requires frequent locking and
unlocking to ensure consistency, which introduces extra system
overhead.

We notice that managing the tokens for each sharing entity to
enforce a policy is equivalent in a statistical approach: we divide
the range of [0, 1] into several segments, with the segment length
proportional to the token counts. Then an I/O worker draws a
random number within [0, 1]. The I/O request of a job is processed if
the randomnumber falls in its corresponding segment. For primitive
policies, the range is split according to the number of jobs, users,
or the node counts. Figure 3(a) and (b) show the statistical token
assignments of the example in Figure 2(a) and (b), respectively.

The statistical token assignment can be calculated as a chain
of transition matrix multiplication. Figure 4 shows the transition
matrices of the user-then-job-fair example. At each sharing entity
level, each row represents a token queue and each column represent

3

Figure 2: (a) An job-fair token assignment example with two
jobs. (b) A user-then-job-fair token assignment of a two-tier
token design with two users, one running two jobs and the
other running four jobs.

Figure 3: (a) An job-fair statistical token assignment exam-
ple with two jobs. (b) A user-then-job-fair statistical token
assignment of a two-tier token design with two users, one
running two jobs and the other running four jobs.

the entities in this level. For example, in the job matrix of Figure 4,
the first row represents the top job queue, where there are two
jobs. The second row represents the lower job queue with four jobs.
To derive the statistical token assignment, we multiply the two
matrices and obtain the results as in Figure 3(b).

Figure 4: A transition matrix example of the user-then-job-
fair policy.

More formally, we refer to the transition matrix as𝑇 𝑖 . The value
of 𝑇 𝑖

𝑗,𝑘
is the fair share of the sharing entity as a percentage of its

local scope. The sum of each row is one, and only one entry in each
column can have a non-zero value, as the sharing percentage is
applied within the local sharing entity scope. The statistical token
assignment is evaluated as:

𝑁−1∏
𝑖=0

𝑇 𝑖 , N: the depth of the sharing policy (1)

Conceptually, this statistical token design is capable of support-
ing any composite sharing policy with an arbitrary depth. It reduces
the the complex data structuremanagement to a chain production of
transition matrices. It removes the frequent use of a locking mecha-
nism in synchronized queues at runtime. The statistical assignment
can be easily adjusted by recalculating the matrix multiplication.
One limitation introduced by this approach is that an application

has to have a sufficiently large I/O workload to make the statistical
token design effective, but this is commonly the case for modern
supercomputing applications.

3.1 Local vs. Global Fairness
With multiple burst buffer servers, the job information on each
server may not always be globally consistent. If the stripes of every
file are spread across all burst buffer servers, e.g., with a sufficiently
large stripe number, then every server has the global job status
without communication. Otherwise, if files land on a disjoint set
of burst buffer servers, every server initially has only local job
information, which may not globally consistent. Synchronization
is required to determine global job state and thus, there is a delay
before global fairness is reached.

Figure 5 shows an example of delayed fairness with size-fair.
Here, Server 1 sees two jobs: Job 1 and Job 2. After checking the size
of the jobs (16 and 8 compute nodes, respectively), Server 1 assigns
[0, 0.66] and [0.66, 1] for the two jobs, respectively. Similarly, Server
2 assigns [0, 0.66] and [0.66, 1] for Job 1 and Job 3. Now Job 1 gets
67% of the available I/O resources. However, by looking at the
job size globally, we see the correct sharing ratio should be 16:8:8,
which means Job 1 should only have 50% of the I/O resources.

To address this, ThemisIO introduces _-delayed fairness, where
controllers perform an all-gather on the job status table every _

time interval. This design guarantees that a globally unfair state
will not last longer than _. After this communication, both Server
1 and 2 see that Job 1 has a larger range than it should. So every
server adjusts the statistical token of Job 1, and global fairness is
reached. An effectiveness study of the length of _ is in §5.6.

Figure 5: A Simple Example of Job Status Table Synchroniza-
tion. Server 1 and 2 start with local job status and allocated
tokens, then synchronize the tables by exchanging the en-
tries and adding token counts.

4 DESIGN AND IMPLEMENTATION
In this section, we present the ThemisIO system’s overall design
and discuss key components and algorithms that enable generic
and global fairness guarantees.

4

4.1 Architecture
ThemisIO exploits a server-client design, as shown in Figure 6.
Clients reside with application processes on compute nodes and
servers run on the burst buffer nodes.

Figure 6: Overview of ThemisIO Architecture. Clients run on
compute nodes with the applications. Servers run on dedi-
cated burst buffer nodes. CN, Compute node; BB, Burst Buffer
node; HB, Heartbeat; Res, Results.

The client intercepts I/O functions, gathers job metadata includ-
ing user id, job id, and job size, then forwards I/O requests to servers.
The client also sends heartbeats to servers, so that the servers can
track job status in real time.

The server has four components: a job monitor, an I/O request
communicator, a controller, and a group of workers. The job
monitor may receive heartbeats from multiple clients of multiple
applications. It maintains a job status table that summarizes job id,
size, user, user group, and status. Job status is set to active when the
corresponding job is new to the server. It is changed to inactive if a
job heartbeat is not received for a predefined period of time. The
communicator receives I/O requests from applications. Those I/O
requests are grouped into queues based on the fair sharing policy.
For example, with size-fair, where I/O resources are proportionally
shared with respect to node count, requests are pushed into queues
that are identified by job ids. The controller synchronizes with
other servers to get the global status of active jobs, and allocates a
number of tokens according to the fair sharing policy. Eachworker
pops one token at a time and an I/O request identified by the token,
then processes the I/O request. There can be multiple workers for
higher I/O throughput.

4.2 Communication
ThemisIO uses Unified Communication X (UCX [24]) for low la-
tency and high bandwidth communication. Each ThemisIO server
maintains two types of UCP workers: one for client-server commu-
nication and the other for server-server communication. A UCP
worker is an opaque object in UCX that represents an instance of a
local communication resource and the progress engine associated
with it. When a ThemisIO server accepts a connection request from

a ThemisIO client, it assigns a UCP worker to the client and keeps
a mapping from the client to the UCP worker. One UCP worker can
be shared between multiple ThemisIO clients.

Each application process/thread launches a ThemisIO client,
which initializes a local UCP worker with a ThemisIO server. When
the endpoint connection is established on the local UCP worker for
the destination ThemisIO server address, jobmetadata is transferred
to the servers. I/O requests are forwarded to the ThemisIO servers
via the UCP worker to be processed, and the results are returned to
the ThemisIO client. The heartbeat monitor in ThemisIO servers
monitors the job status, and if a job is inactive for a predefined
period of time, the server marks the job’s status as inactive and
destroying all the UCPworker resources mapping entries associated
with that job. When a client exits, it notifies the ThemisIO servers
to destroy the corresponding mapping entry.

The UCP workers are persistent during the lifetime of ThemisIO.
ThemisIO servers synchronize the job status table to have a global
view of the jobs and the assigned tokens. This synchronization
enables the controller to adjust the token count to achieve _-fairness,
as discussed in §3.1.

4.3 File System
We integrate ThemisIO with a byte-addressable file system to sup-
port NVMe or SSD. To gain complete control and native speed, we
implement a user space file system ourselves, however, ThemisIO
can work with any shared file system in either kernel or user space.
In this file system, both directories and files are stored as files, and
files and metadata are spread across ThemisIO servers using a con-
sistent hash function. Striping is supported with corresponding
records in file metadata.

The location of a file is on one or more servers, determined by a
hash function, and on those servers, an index specifies the NVMe
region of the file’s contents. Directory and file creation updates
the content of the parent directory. Queries over a directory return
the content in that directory. Reading a file returns the contents
specified by the path and offset range. Writing a file writes/over-
writes a range of allocated byte-addressable space in NVMe, and
the metadata update is done on the same ThemisIO server. Concur-
rent read operations on the same file are executed without locking.
Concurrent write operations to the same file proceed without any
limitation if the byte ranges do not conflict. However, a locking
mechanism is used when multiple threads are updating the file
metadata.

4.4 I/O Function Interception
One of the design principles of ThemisIO is to be compatible with
existing applications, i.e., applications do not have to make code
change to leverage ThemisIO. However, most production super-
computers do not grant root privilege, which makes a kernel mod-
ule implementation infeasible. So ThemisIO uses a I/O function
interception technique. In this way, ThemisIO provides a POSIX-
compliant interface, with which users can simply point I/O to a path
that is prefixed by ThemisIO namespace, e.g., /fs/input/path. All
I/O to/from this path will be intercepted by ThemisIO then pro-
cessed in burst buffers.

5

To implement this, we either intercept the 64-bit version of I/O
functions in the GNU C Library by simply exposing functions with
the same name, or rewrite the first several instructions of a function
with a jump instruction to the function implemented in ThemisIO
library, then jump back to the original function if necessary. The
first method is referred to as override [14] and the second method
as trampoline [10].

Listing 1 summarizes the intercepted functions.

1 int open(const char *filename , int flags[, mode_t mode])

2 int close(int fd)

3 ssize_t read(int fd , void *buffer , size_t size)

4 ssize_t write(int fd , const void *buffer , size_t size)

5 off_t lseek(int fd , off_t offset , int whence)

6 DIR * opendir (const char *dirname)

7 struct dirent * readdir(DIR *dirstream)

8 int closedir (DIR *dirstream)

9 int stat(const char *filename , struct stat *buf)

Listing 1: Example Intercepted Functions

5 EXPERIMENTS AND RESULTS
To validate the effectiveness of the ThemisIO design and the cor-
rectness of our implementation, we run both benchmark and real
applications with various sharing policies. We also implement the
sharing algorithms in GIFT and TBF in ThemisIO and perform a
comparative study. In addition, we investigate the impact of system
performance with various communication intervals in _-delayed
fairness. In summary:

• Benchmarks show that ThemisIO can efficiently share I/O
resources between jobs with both primitive and composite
policies (details in §5.3).

• The comparison study with FIFO, GIFT, and TBF shows that
ThemisIO shares I/O resources more efficiently and stably
(details in §5.4).

• Real applications show that ThemisIO reduces the I/O in-
tervention slowdown drastically or completely (details in
§5.5).

• The communication interval in _-delayed fairness can be as
large as 500 ms without significant impact on global fairness.
(details in §5.6)

All the experiments are run on the TACC Frontera supercom-
puter, which consists of 8,008 CPU nodes (CLX), 16 large-memory
nodes (NVDIMM), and 90 GPU nodes (RTX). The CPU nodes have
two Intel Xeon Platinum 8280 processors and 192 GB RAM. Each
large-memory node has four Intel Xeon Platinum 8280 processors
and 2.1 TB RAM, supported by Intel Optane memory. Each GPU
node has four Nvidia Quadro RTX 5000 cards and 128 GB RAM. In
all experiments, ThemisIO runs on the CLX nodes with RAM as
storage devices.

5.1 Benchmark and Application Configuration
Throughout the experiments, we used IOR and mdtest for simple
tests and a customized benchmark to measure I/O sharing perfor-
mance. The customized benchmark simulates two workloads: 1)
iops_stat repeatedly calls stat() to query file metadata with randomly
generated file names; 2) iops_write_read writes a small (1 MB) file
then reads the same file repeatedly. We disable client caching in all

tests as ThemisIO is designed for remote-shared burst buffer, and
we are investigating the I/O sharing capability in particular.

To simplify validation of the sharing capability, we run each appli-
cation at a fixed size. Some of the applications take too long to finish,
so we only run cases with a reasonable time length, which are still
representative of their I/O workloads. TheWRF benchmark uses
the 12 KM CONUS Benchmark dataset from https://www2.mmm.
ucar.edu/wrf/WG2/benchv3/#_Toc212961288. It is a 48-hour, 12-km
resolution case over the Continental U.S. (CONUS) domain October
24, 2001 with a time step of 72 seconds. We run the WRF bench-
mark on 4 nodes each with 56 MPI process per node. The NAMD
benchmark uses the 1M atom Satellite Tobacco Mosaic Virus sys-
tem from https://www.ks.uiuc.edu/Research/namd/benchmarks/.
It runs on 64 nodes with 8 MPI processes per node and 7 threads
per process. The input was modified to save trajectory every 48
steps. The SPECFEM3D benchmark runs a small-scale regional
seismic wave propagation simulation tweaked from the benchmark
data set published by NVIDIA (https://www.nvidia.com/en-sg/data-
center/gpu-accelerated-applications/specfem3d-globe/). The grid
is defined in one cubed-sphere chunk of the globe and sliced into
224x256 elements. The simulated record length is 100 minutes. We
run the benchmark on 16 nodeswith 56MPI processes per node. The
ResNet-50 case uses an open source PyTorch implementation [21]
with the ImageNet [3] dataset that contains 1,331,167 images. The
total size is ∼156 GB and the average size of the image is about
116 KB. We run ResNet-50 on 16 RTX nodes with a 128 batch size
per GPU. The complete training time is ∼20 hours, so we only use
the first three epochs (3 × 157 steps) in this case. The BERT case
is a PyTorch implementation [20] with the English wikitext and
Toronto Book Corpus datasets. The text is reorganized as 512 HDF5
files, with a total size of 71 GB and an average size of ∼48 MB. We
run BERT on four RTX nodes with a 16 batch size per GPU. BERT
training has two phases, where phase 1 takes 393 hours to finish
on four RTX nodes, so we only use the first three steps in this case.

5.2 Scaling Performance
Figure 7 represents the unidirectional aggregate throughput achieved
running the ThemisIO server on 1 to 128 nodes. For each set of
server nodes, an equal number of nodes were each running eight
IOR processes, writing and reading 1 GB files in 1 MB blocks. We
include a comparison of the performance of simple FIFO queuing
versus job-fair queuing. With one server node, this achieved a maxi-
mum throughput of 11.7 GB/s. With eight server nodes, the slowest
result was for FIFO reads at 77.1 GB/s, a scaling efficiency of 82%.
With 128 server nodes, the throughput reached 1017 GB/s, a scaling
efficiency of 68%. For comparison, the largest Lustre file system
on Frontera has 32 OST nodes with an aggregate throughput of
120 GB/s. The DataWarp burst buffer on NERSC Cori has a peak
throughput of 1.7 TB/s with each burst buffer node contributing
6.5 GB/s. The sustained I/O throughput of ThemisIO is comparable
to the state of the art production system. It is worth noting that
these experiments were unidirectional, just writing or just read-
ing, unlike the read/write tests in Figure 8, where only half the
interconnect throughput is available.

6

https://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961288
https://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961288
https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/specfem3d-globe/
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/specfem3d-globe/

 10

 100

 1000

1 2 4 8 16 32 64 128

T
hr

ou
gh

pu
t

in
 G

B
/s

Server node count

Ideal scaling
FIFO read

FIFO write
Job-fair read

Job-fair write

Throughput scaling

Figure 7: Aggregate throughput when using multiple Themi-
sIO server nodes

5.3 Sharing with Various Policies
In this section, we present ThemisIO’s sharing capability with vari-
ous primitive and composite policies.

5.3.1 Primitive Policy. Figure 8 shows the results of three primitive
sharing policies, namely, size-fair, job-fair, and user-fair. We
concurrently run two benchmark programs on different numbers
of nodes and report the throughput (MB/s) to examine the sharing
efficacy. The benchmark program in these experiments opens one
file per process. Each process writes 10 MB of data to its file, then
reads it back, and continues to repeat this write/read cycle for a set
length of time. Figure 8 demonstrates the measured I/O throughput
with samples taken at 1-second intervals. The actual response time
of each I/O operation is on the order of 1 microsecond. The two-
second delay is a measurement artifact.

Figure 8(a) demonstrates a server running in size-fairmode with
a 224-process benchmark job running on four nodes competing for
server throughput with a benchmark job consisting of 56 processes
running on one node. The first job runs for 60 seconds, while the
second job run for 30 seconds, starting 15 seconds after the first
job starts. The median throughput of the 4-node job when running
unopposed is 21.8 GB/sec. The median throughput of the 4-node
job and the 1-node job when both are running is 17.4 GB/sec and
4.4 GB/sec, respectively. This represents a throughput ratio of 3.96x,
which closely approximates the 4x ratio of job sizes.

Figure 8(b) demonstrates the same pair of benchmark jobs, but
with a server running in job-fair mode. The first job still consists
for four times as many client processes, but the overall throughput
for the jobs when both are running is nearly equal, with a median
throughput of 10.6 GB/sec.

In Figure 8(c), the server is configured in user-fair mode, and
three jobs from two users compete for throughput. User A is run-
ning two jobs, each ofwhich uses two nodes, while User B is running
one job on one node. When all three jobs are running, User A’s jobs
have a median total throughput of 10.85 GB/sec, which is roughly
the same as the throughput of User B’s job: 10.80 GB/sec.

5.3.2 Composite Policy. Next, we examine the I/O sharing effi-
ciency with composite policies. In particular, we choose the user-
then-size-fair and group-user-then-size-fair policies.

In the first experiment, we run four jobs owned by two users
with different node count. As shown in Figure 9, user-fair sharing is
achieved at the first level, as the two jobs of user 1 get a throughput
of 10.1 GB/s, while user 2 gets 9.9 GB/s. Looking deeper into the
two jobs of user 1, Job 1 gets 3.4 GB/s and Job 2 gets 6.7 GB/s, which
matches the ratio between node count of 1:2. Similarly, Job 3 and
4 get 3.9 GB/s and 6.0 GB/s, respectively. It is close to the node
count ratio of 4:6. The aggregated throughput is 20 GB/s, which is
∼1.7 GB/s lower than the primitive policy. This throughput degra-
dation is caused by the slow startup of ThemisIO when setting
up the connections between clients and servers, which is negli-
gible compared to the long runtime of modern supercomputing
applications.

To demonstrate the flexibility of ThemisIO in supporting compos-
ite policies, we also implement a three-tier group-user-size-fair
policy. This policy should enforce an even I/O throughput partition
across groups, then across users in each group, allocating the I/O
resource among jobs of each user in proportion to the job size. Fig-
ure 10 shows the results of the experiment with two groups, four
users, and eight jobs, and Figure 11 shows the results as a hierarchy
tree. Group 1 gets 9.5 GB/s and Group 2 gets a total of 11.2 GB/s.
This is not an exactly even split due to the slow startup in first 10
seconds, as in the previous experiment. However, I/O resource are
almost fair-shared after the startup period. Inside Group2, User 2,
3, and 4 get total throughput of 3.8 GB/s, 3.7 GB/s, and 3.7 GB/s,
respectively. I/O through is evenly split between the three users.
For each user, all jobs get throughput proportional to the job size.
That is to say, the three jobs of User 2 get 1.1 GB/s, 1.6 GB/s, and
1.1 GB/s, which is almost the ratio of 2:3:2. The overall through-
put is 20.7 GB/s, which is only 1 GB/s lower than the maximum
throughput.

In summary, ThemisIO can effectively and efficiently support
primitive policies that are as easy as size-fair, job-fair, and user-fair.
It is also capable of supporting composite polices such as user-size-
fair and group-user-size-fair.

5.4 Comparison with Existing Solutions
In this experiment, we compare the I/O resource sharing perfor-
mance of ThemisIO with existing solutions of GIFT and TBF using
the metrics of overall I/O throughput, latency to fair-sharing, and
the standard deviation of I/O throughput.

To understand the performance of ThemisIO vs. that of GIFT,
we copy the GIFT core algorithms, BSIP (Basic Synchronous I/O
Progress) and the linear programming algorithm, from the GIFT
codebase into ThemisIO and replace the I/O resource allocation and
throttling mechanisms of LINUX cgroups with the ThemisIO prob-
abilistic token design. GIFT uses pending I/O requests every ` time
interval to determine bandwidth allocation. The default setting of
` is ten seconds, which leads to a long delay in I/O resource adjust-
ment. We experiment with a series of ` values and conclude that 0.5
sec is an appropriate interval for our reference implementation. The
original implementation of TBF on Lustre directly manages tokens,
which are assigned based on I/O request type. Similarly to GIFT, we

7

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60

21783 MB/s

17356 MB/s

4363 MB/sT
hr

ou
gh

pu
t i

n
M

B
/s

ec

Time in seconds

4 nodes
1 node

(a) Size-fair, 4-node job competing with 1-node job

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60

21673 MB/s

10558 MB/s

T
h

ro
ug

hp
u

t
in

 M
B

/s
ec

Time in seconds

4 nodes
1 node

(b) Job-fair, 4-node job competing with 1-node job

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60

22106 MB/s

10802 MB/s

5426 MB/sT
h

ro
ug

hp
u

t
in

 M
B

/s
ec

Time in seconds

User A, job 1, 2 nodes
User A, job 2, 2 nodes

User B, 1 node

(c) User-fair, Two 2-node jobs competing with a 1-node
job

Figure 8: Effectiveness of I/O Resource Sharing with Size-, Job-, and User-fair Policies with Single ThemisIO Server.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 35 40 45 50 55 60 65 70

T
hr

o
ug

hp
ut

 i
n

M
B

/s
ec

Time in seconds

User 1, Job 1, 1 node, 3.3 GB/s
User 1, Job 2, 2 nodes, 6.6 GB/s
User 2, Job 3, 4 nodes, 3.9 GB/s
User 2, Job 4, 6 nodes, 5.9 GB/s

Fairness order: user, size

Figure 9: Four competing jobs, two from each user. Total
throughput is balanced between users and between jobs be-
longing to each user.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 30 40 50 60 70

T
hr

ou
gh

pu
t

in
 M

B
/s

ec

Time in seconds

g1 u1 n=1, 9.5 GB/sec
g2 u2 n=2, 1.1 GB/sec
g2 u2 n=3, 1.6 GB/sec
g2 u2 n=2, 1.1 GB/sec
g2 u3 n=3, 2.2 GB/sec
g2 u3 n=2, 1.5 GB/sec
g2 u4 n=1, 1.2 GB/sec
g2 u4 n=2, 2.5 GB/sec

Fairness order: group, user, size
2 groups, 4 users, 8 jobs

Figure 10: Eight competing jobs from two groups containing
four users. Throughput is balanced by group, then by user,
then by size.

implement the core HTC (Hard Token Compensation) and PSSB
(Proportional Sharing Spare Bandwidth) strategies and integrate
them with ThemisIO’s I/O resource allocation mechanism.

Figure 12 presents the comparison of ThemisIO with GIFT and
TBF using a pair of single node benchmark jobs. In each experiment,
Job 1 runs for 60 seconds and Job 2 is started 15 seconds after Job
1 and runs for 30 seconds. ThemisIO runs in job-fair mode. The
sustained peak throughput of ThemisIO is 19.8 GB/s, which is 13.5%
and 13.7% higher than that of GIFT and TBF, respectively. During
the sharing phase, the throughput of Job 2 is 10.2 GB/s, which is
7.9% and 14.7% higher than GIFT and TBF. ThemisIO also shows a

Total throughput: 20.7 GB/s

Group 2: 54%

User 4: 17.9%
Job 8, size=2: 11.9%

Job 7, size=1: 5.95%

User 3: 17.8%
Job 6, size=2: 7.12%

Job 5, size=3: 10.7%

User 2: 18.0%

Job 4, size=2: 5.13%

Job 3, size=3: 7.74%

Job 2, size=2: 5.11%

Group 1: 46% User 1: 46% Job 1, size=1: 46%

Figure 11: Tree depiction of group-user-size-fair policy exper-
iment. Each node lists the percentage of the overall through-
put allocated to that job, user, or group of users. Note that
the throughput is approximately balanced across groups and
users within a group, and proportional to job size across jobs
for each user.

lower standard deviation of the throughput of Job 2 with a value
of 504 MB/s, compared with 626 MB/s for GIFT and 845 MB/s for
TBF. Compared with existing solutions, ThemisIO shares I/O re-
sources more efficiently and more stably. In addition, GIFT and TBF
only support job-fair sharing and require prior knowledge, e.g., the
repeated pattern and the I/O rate. In contrast, ThemisIO is more
versatile in sharing policies and it gathers all necessary information
at runtime from the I/O traffic, which makes I/O resource shar-
ing adaptive to the real workload without requiring user-supplied
information.

5.5 Sharing with Applications
In previous experiments, we showed that ThemisIO can correctly
and efficiently share I/O resources among jobs with benchmarks.
In this experiment, we study the overall impact of policy-driven
I/O resource sharing on applications. We run the five applications
1) with exclusive access to a ThemisIO deployment of one server
except ResNet-50 which runs with two servers due to space limit,
2) with FIFO policy and a background benchmark job (one compute
node), and 3) with size-fair policy and the background benchmark
job. We expect that with size-fair, ThemisIO can significantly
reduce the impact of I/O interference. Figure 13 demonstrates the

8

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60

19832 MB/s

10179 MB/s

T
hr
o
u
g
hp
u
t
in

 M
B
/s
ec

Time in seconds

1 node
1 node

(a) Job-fair Sharing with ThemisIO.

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60

17470 MB/s

9436 MB/s

T
h
ro
u
g
h
pu
t
in

 M
B
/s
ec

Time in seconds

1 node
1 node

(b) Job-fair Sharing with GIFT.

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60

17446 MB/s

8878 MB/s

T
hr
o
u
g
hp
u
t
in

 M
B
/s
ec

Time in seconds

1 node
1 node

(c) Job-fair Sharing with TBF.

Figure 12: I/O Resource Sharing Comparison with Existing Solutions with Single ThemisIO Server.

Figure 13: Relative FIFO and size-fair time-to-solution to the
baseline with exclusive ThemisIO access. This experiment
uses two ThemisIO servers.

performance measurements of the five applications with the three
settings. With FIFO and the background job, NAMD, WRF, BERT,
and SPECFEM3D are slowed down by 60.6%, 45.3%, 3.8%, and 3.0%,
respectively. With size-fair and the background job, the slowdown
of each application is 0.1%, 4.6%, 1.6% , and 0.0%. All the slowdowns
of size-fair are bounded by its fair share of the I/O resource in
proportion to node count. For example, NAMD is run on 64 nodes,
so the maximum possible slowdown with a background benchmark
job from one node should be 1/65 = 1.5%, assuming NAMD is
entirely I/O. However, due to the non-trivial computation in NAMD,
the measured slowdown is only 0.1%.

The only observed exception is ResNet-50, which uses asyn-
chronous I/O. The 2.7x slowdown with FIFO is reduced to 12.9%
with size-fair. The 12.9% slowdown exceeds the maximum possible
value of 5.9%. which is calculated as the ratio of the background
job size to the total node count of the two jobs (1/17). We believe
this is due to the bounding factor change: with asynchronous I/O,
ResNet-50 is bounded by the computation and communication. As
the I/O latency increases, I/O becomes the dominating factor, which
introduces a non-linear increase in time-to-solution. To further val-
idate the effectiveness of size-fair, we change the I/O of ResNet-50
to be synchronous. Although the synchronous I/O is slower than
asynchronous I/O (with a 62.1% overhead), the size-fair policy with
ThemisIO only introduces a 1.1% slowdown compared to the ex-
clusive case. In contrast, the FIFO policy slows ResNet-50 down by
2.0x.

The results clearly show that ThemisIO can dramatically reduce
the impact of I/O interference by proportionally sharing I/O ca-
pability with the size-fair policy. With ThemisIO fair-share, these
slowdown caused by I/O interference is reduced by 59.1–99.8%

across applications. The resulting time-to-solutions are all below
the maximum possible slowdown with the appropriate amount of
I/O capability, which shows that the delay introduced by ThemisIO
sharing policies is bounded.

5.6 _-delayed Fairness
In §3.1, we introduced _-delayed fairness to mitigate an imbalanced
sharing of I/O resources due to using a local job view. In this ex-
periment, we vary the communication interval (_) and study the
impact of this parameter on the overall system. This experiment
has three jobs with associated files spread across two ThemisIO
servers exclusively, so ThemisIO starts in a unfair sharing state.
Our tests set the communication interval to {10, 50, 200, 500} ms.
Figure 14 shows the sharing percentage of each job’s I/O usage
in the four test cases. Using a communication interval of 50, 200,
and 500 ms, ThemisIO reaches global fairness by the second inter-
val. With a 10 ms interval, it takes five intervals for ThemisIO to
reach global fairness. One other thing to note is that using a shorter
communication interval produces a higher variance in the I/O re-
sources allocated among the jobs, as discussed in §3. We observe
that ∼50 ms is the effectiveness boundary of ThemisIO on Frontera.
Although this boundary depends on the processing speed of the
server, the interconnect, and the underlying shared file system, we
find the 500 ms communication interval is a reasonable value for
real applications and benchmarks.

6 RELATEDWORK
Traditional I/O research, such as MPI-IO [26, 27] and ADIOS [17],
optimizes individual job performance by intelligently mapping
memory region to file system data structures. ZOID [11] is an
operating system level I/O component that decouples file and socket
I/O and enables customized application I/O interface at scale.

Researchers have noticed interference when sharing I/O re-
sources among applications [18]. In practice, production burst buffer
systems, such as DataWarp [8] on the Cori supercomputer, inte-
grate with SLURM, so that users can provision burst buffers with
two simple policies: bandwidth and interference. The bandwidth
policy allocates burst buffer servers to a job to maximize its I/O
throughput. The inference policy assigns a minimal number of burst
buffer servers to a job, but with exclusive access. Both policies are

9

Figure 14: _-delayed global fairness with various interval
lengths (_).

resource underutilization prone: The bandwidth policy can under-
utilize the allocated I/O resource while the interference policy can
lead to resource starvation.

Other research has investigated the origin of this interference
and proposed different solutions. For example, I/O-aware job sched-
uling [9] attributes the interference to the aggregated I/O through-
put of interconnect switches, then proposes an I/O provisioning
algorithm with users’ input of their required throughput. This
method guarantees that the aggregated bandwidth of jobs does not
exceed that of switches; however, multiple jobs can still be placed
under the same switch, which processes I/O requests in a FIFO man-
ner and results in possible indefinite blocking of an application due
to the lack of isolation. Also, a user can easily specify a higher I/O
throughput than the application needs to over-provision resources.
Physical isolation [15] maps I/O workloads from different jobs to a
disjoint group of file system servers, which provides isolation but
can result in low overall efficiency as jobs may not be able to fully
utilize the resources. In particular, this approach allocates file sys-
tem servers based on the output file size specified by users, which
can be gamed with boosted values. Liang et al. analyze the impact
of I/O process count on the contention problem, and propose the
CARS system to map jobs to burst buffer servers to avoid such I/O
contention [16]. Similar to I/O-aware scheduling, this approach
does not support isolation, and the policy can be tampered with
through user input of the I/O process count.

Recent research on I/O forwarding resource sharing such as
GIFT [19], TBF [23], and DFRA [12] investigates system design and
algorithms to enable efficient and fair sharing of I/O resources. GIFT
and DFRA use the fact of 80% of HPC applications are run more
than five times. They design a specific throttle-and-reward mech-
anism and profile-based job placement, respectively. In contrast,
ThemisIO assigns I/O resources based on real-time I/O dynamics
and is effective for both known and new applications. Similar to
ThemisIO, TBF enables I/O resource sharing among compute nodes,
jobs, or I/O operations. It requires user-supplied upper and lower
I/O request rate and provides QoS accordingly. However, it is dif-
ficult to know the exact I/O request rate of an application, even

for an experienced user. In addition, the user-supplied request rate
may not be accurate.

7 CONCLUSION AND FUTUREWORK
This paper has presented ThemisIO, an automatic, policy-driven,
and efficient I/O sharing framework for burst buffer. It enables
policy-driven I/O resource sharing and minimizes the impact of
I/O interference with a statistical token design to time-slice I/O
request processing cycles and assigning cycles based on runtime
information of jobs. We introduced _-delayed fairness to mitigate
the sub-optimal sharing problem due to the job information discrep-
ancy. We demonstrate the sharing policy flexibility of ThemisIO
with three primitive sharing policies and two composite policies.
Our benchmark results show that ThemisIO can correctly and effi-
ciently enforce specified sharing policies to assign I/O resources
using various policies. The I/O sharing enabled by ThemisIO sus-
tains a 13.5–13.7% higher I/O throughput and a 19.5–40.4% lower
performance variation than existing algorithms. In a controlled
environment, ThemisIO significantly reduces or eliminates the ap-
plication slowdown caused by I/O interference compared to the
FIFO baseline. As future work, we are investigating various log-
structure byte-addressable file system designs and persistent data
structure strategy to enable fault tolerance in ThemisIO.

8 ACKNOWLEDGEMENTS
This work was supported by NSF OAC-2008388 and OAC-2008286.

REFERENCES
[1] Lorenzo Casalino, Abigail C Dommer, Zied Gaieb, Emilia P Barros, Terra Sztain,

Surl-Hee Ahn, Anda Trifan, Alexander Brace, Heng Ma, Hyungro Lee, et al. 2020.
AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike
dynamics. BioRxiv (2020).

[2] Tom Charnock and Adam Moss. 2016. Deep Recurrent Neural Networks for
Supernovae Classification. arXiv preprint arXiv:1606.07442 (2016).

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
geNet: A large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2009). 248–255.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] Mike Folk, Albert Cheng, and Kim Yates. 1999. HDF5: A file format and I/O library
for high performance computing applications. In SC’99: International Conference
for High Performance Computing, Networking, Storage and Analysis, Vol. 99. 5–33.

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
R-CNN. In IEEE International Conference on Computer Vision. 2961–2969.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition. 770–778.

[8] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright, and
Nicholas J Wright. 2016. Architecture and design of Cray DataWarp. In Cray
User Group meeting.

[9] Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW Scogland, Marc Stear-
man, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer. 2016.
Scalable I/O-aware job scheduling for burst buffer enabled HPC clusters. In Pro-
ceedings of the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing. ACM, 69–80.

[10] Galen Hunt and Doug Brubacher. 1999. Detours: Binary interception of Win32
functions. In 3rd USENIX Windows NT Symposium.

[11] Kamil Iskra, John W Romein, Kazutomo Yoshii, and Pete Beckman. 2008. ZOID:
I/O-forwarding infrastructure for petascale architectures. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 153–162.

[12] Xu Ji, Bin Yang, Tianyu Zhang, Xiaosong Ma, Xiupeng Zhu, Xiyang Wang,
Nosayba El-Sayed, Jidong Zhai, Weiguo Liu, and Wei Xue. 2019. Automatic,
application-aware I/O forwarding resource allocation. In 17th {USENIX} Confer-
ence on File and Storage Technologies ({FAST} 19). 265–279.

10

[13] Julian Kates-Harbeck, Alexey Svyatkovskiy, and William Tang. 2019. Predicting
disruptive instabilities in controlled fusion plasmas through deep learning. Nature
568, 7753 (2019), 526–531.

[14] Michael Kerrisk and P Zijlstra. 2014. Linux Programmer’s Manual. The Linux
man-pages project 3 (2014).

[15] Anthony Kougkas, Matthieu Dorier, Rob Latham, Rob Ross, and Xian-He Sun.
2016. Leveraging burst buffer coordination to prevent I/O interference. In 2016
IEEE 12th International Conference on e-Science (e-Science). IEEE, 371–380.

[16] Weihao Liang, Yong Chen, Jialin Liu, and Hong An. 2019. CARS: A contention-
aware scheduler for efficient resource management of HPC storage systems.
Parallel Comput. 87 (2019), 25–34.

[17] Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and integration for scientific codes through the adaptable IO
system (ADIOS). In 6th International workshop on Challenges of Large Applications
in Distributed Environments (CLADE). ACM, 15–24.

[18] Misbah Mubarak, Philip Carns, Jonathan Jenkins, Jianping Kelvin Li, Nikhil
Jain, Shane Snyder, Robert Ross, Christopher D Carothers, Abhinav Bhatele, and
Kwan-Liu Ma. 2017. Quantifying I/O and communication traffic interference on
dragonfly networks equipped with burst buffers. In IEEE International Conference
on Cluster Computing. IEEE, 204–215.

[19] Tirthak Patel, Rohan Garg, and Devesh Tiwari. 2020. GIFT: A coupon based
throttle-and-reward mechanism for fair and efficient i/o bandwidth manage-
ment on parallel storage systems. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). 103–119.

[20] J Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard,
Ian Foster, and Zhao Zhang. 2021. KAISA: an adaptive second-order optimizer
framework for deep neural networks. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 1–14.

[21] J Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T Foster. 2020.
Convolutional Neural Network Training with Distributed K-FAC. International

Conference for High Performance Computing, Networking, Storage and Analysis
(2020).

[22] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhor-
shid, Elizabeth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and
Klaus Schulten. 2005. Scalable molecular dynamics with NAMD. Journal of
Computational Chemistry 26, 16 (2005), 1781–1802.

[23] Yingjin Qian, Xi Li, Shuichi Ihara, Lingfang Zeng, Jürgen Kaiser, Tim Süß, and
André Brinkmann. 2017. A configurable rule based classful token bucket filter
network request scheduler for the lustre file system. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–12.

[24] Pavel Shamis, Manjunath Gorentla Venkata, M Graham Lopez, Matthew B Baker,
Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L Graham,
Liran Liss, et al. 2015. UCX: an open source framework for HPC network APIs and
beyond. In 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.
IEEE, 40–43.

[25] William C Skamarock, Joseph B Klemp, and Jimy Dudhia. 2001. Prototypes for
the WRF (Weather Research and Forecasting) model. In Preprints, Ninth Conf.
Mesoscale Processes. Amer. Meteorol. Soc., J11–J15.

[26] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. On implementing MPI-IO
portably and with high performance. In Proceedings of 6th Workshop on I/O in
Parallel and Distributed Systems. 23–32.

[27] Rajeev Thakur, Ewing Lusk, and William Gropp. 1997. Users guide for ROMIO: A
high-performance, portable MPI-IO implementation. Technical Report. Argonne
National Laboratory.

[28] Sagar Thapaliya, Purushotham Bangalore, Jat Lofstead, Kathryn Mohror, and
Adam Moody. 2016. Managing I/O interference in a shared burst buffer system.
In 45th International Conference on Parallel Processing (ICPP). IEEE, 416–425.

11

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://zenodo.org/badge/latestdoi/333189409

ARTIFACT IDENTIFICATION
ThemisIO is a first of its kind software-defined I/O system for
supercomputers. It enables policy-driven I/O capacity sharing on
supercomputers. At its core, ThemisIO disassociates I/O control (i.e.,
I/O request processing order) from processing by incorporating job
metadata such as user, job id, and job size (i.e., node count) ThemisIO
can precisely balance the I/O cycles between applications via time
slicing to enforce processing isolation, enabling a variety of fair
sharing policies. ThemisIO can precisely allocate I/O resources to
jobs so that every job gets at least its fair share of the I/O capacity as
defined by the sharing policy. ThemisIO can decrease the slowdown
of real applications due to I/O interference by two to three orders
of magnitude when using fair sharing polices compared to the
first-in-first-out (FIFO) baseline.

The open source ThemisIO software can run on supercomputer
with x86 architecture, and researchers can use this software to
support HPC applications and do further research.

The software was only tested on TACC Frontera supercomputer
with both nvdimm and CLX nodes. All experiments in the paper
are reproducible.

REPRODUCIBILITY OF EXPERIMENTS
1. This instruction records how to reproduce results in paper. We
assume the AD/AE team has access to TACC Frontera. If not, please
reach out to zzhang@tacc.utexas.edu and iwang@tacc.utexas.edu.
We can facilitate test accounts for AD/AE evaluation.

2. The total time lasts about 30 minutes.
3. The output of the experiments are in the text files. E.g.,

https://github.com/bbThemis/ThemisIO/blob/main/testfair/size-
fair.1vs1.txt. We visualize these numerical results in the figures of
the paper.

The complete reproduction instruction is in
https://github.com/bbThemis/ThemisIO/blob/main/instructions.md.

4. Step 6 corresponds to Figure 6(a); Step 7 corresponds to Figure
6(b); Step 10 corresponds to Figure 6(C)

To reproduce Figure 7, please follow
https://github.com/bbThemis/ThemisIO/blob/main/instructions.md#instructions-
for-recreating-throughput-scaling-results

For Figure 19, checkout the "composite-sharing" branch
by running: git checkout composite-sharing Then run "test-
fair/group_radical.sh" to produce "group_8_jobs.txt" output file.

To reproduce GIFT results (Figure 12(b)), please follow
https://github.com/bbThemis/ThemisIO/blob/main/instructions.md#instructions-
for-recreating-gift-results-on-themisio.

To reproduce TBF results (Figure 12(c)), please follow
ttps://github.com/bbThemis/ThemisIO/blob/main/instructions.md#instructions-
for-recreating-tbf-results-on-themisio.

ARTIFACT DEPENDENCIES REQUIREMENTS
1. We use the TACC Frontera supercomputer. 2. CentOS Linux 7 3.
Intel MPI 19.0.5, ibverbs, pthreads

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Compile server and wrapper.so, git clone
https://github.com/bbThemis/ThemisIO cd ThemisIO mkdir
obj make cd src/client ./compile.sh

You need to revise the impi path in Makefile.
Run a server, cd ThemisIO ./server
Run on client side export

MYFS_CONF="/full_path/ThemisIO/myfs.param" export
LD_PRELOAD="/full_path/ThemisIO/wrapper.so"

ls -l /myfs touch /myfs/a ls -l /myfs
Run Client within a container Assume you are on a sys-

tem with the server running already (see above for instructions of
launching a server), you may run the client within our pre-built
container. To pull the container with Docker, run:

1. docker pull ghcr.io/bbthemis/themisio:client This can also be
done with other container runtimes, for example the Apptainer:

1. apptainer pull themisio.sif
docker://ghcr.io/bbthemis/themisio:client Then, you may
run a shell within the container (using apptainer as example here):

1. apptainer run themisio.sif bash You can then access the filesys-
tem with:

1. export MYFS_CONF="/full_path/ThemisIO/myfs.param" 1. ex-
port LD_PRELOAD="/ThemisIO-client/wrapper.so" 1. ls -l /myfs
1. touch /myfs/a 1. ls -l /myfs You may also build a new container
using our client container as the base to run any applications with
ThemisIO support.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Sharing via Statistical Tokens
	3.1 Local vs. Global Fairness

	4 Design and Implementation
	4.1 Architecture
	4.2 Communication
	4.3 File System
	4.4 I/O Function Interception

	5 Experiments and Results
	5.1 Benchmark and Application Configuration
	5.2 Scaling Performance
	5.3 Sharing with Various Policies
	5.4 Comparison with Existing Solutions
	5.5 Sharing with Applications
	5.6 -delayed Fairness

	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgements
	References

