
doi: 10.1098/rsta.2009.0054
, 2545-2556367 2009 Phil. Trans. R. Soc. A

 
Promita Chakraborty, Shantenu Jha and Daniel S. Katz
 
time-to-solution
across distributed resources for reduced 
Novel submission modes for tightly coupled jobs
 
 

Subject collections

 (2 articles)systems theory   �
 
collections
Articles on similar topics can be found in the following

Email alerting service
 herein the box at the top right-hand corner of the article or click 

Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to 

This journal is © 2009 The Royal Society

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/cgi/collection/systems_theory
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;367/1897/2545&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/367/1897/2545.full.pdf?ijkey=RstzvqSle8Srvkn&keytype=finite
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
Novel submission modes for tightly coupled
jobs across distributed resources for reduced

time-to-solution

BY PROMITA CHAKRABORTY
1,2,*, SHANTENU JHA

1,2,3,*
AND DANIEL S. KATZ

1

1Center for Computation & Technology, and 2Department of Computer Science,
Louisiana State University, Baton Rouge, LA 70803, USA

3e-Science Institute, Edinburgh EH8 9AA, UK

The problems of scheduling a single parallel job across a large-scale distributed system are
well known and surprisingly difficult to solve. In addition, because of the issues involved in
distributed submission, such as co-reserving resources, and managing accounts and
certificates simultaneously on multiple machines, etc., the vast number of high-
performance computing (HPC) application users have been happy to remain restricted
to submitting jobs to single machines. Meanwhile, the need to simulate larger and more
complex physical systems continues to grow, with a concomitant increase in the number of
cores required to solve the resulting scientific problems. One might reduce the demand on
load per machine, and eventually the wait-time in queue, by decomposing the problem to
use two resources in such circumstances, even though there might be a reduction in the
peak performance. This motivates a question. Can otherwise monolithic jobs running on
single resources be distributed over more than one machine such that there is an overall
reduction in the time-to-solution? In this paper, we briefly discuss the development and
performance of a parallel molecular dynamics code and its generalization to work on
multiple distributed machines (using MPICH-G2). We benchmark and validate the
performance of our simulations over multiple input datasets of varying sizes. The primary
aim of this work, however, is to show that the time-to-solution can be reduced by
sacrificing some peak performance and distributing over multiple machines.

Keywords: job submission paradigm; tightly coupled distributed performance;
scheduling
On
and

*A
Sta
1. Introduction

The need to simulate larger and more complex systems continues to grow, with a
concomitant increase in the number of cores required to solve the resulting
scientific problems. The number of processors typically available for specific
compute jobs on a given machine has been increasing and will continue to
Phil. Trans. R. Soc. A (2009) 367, 2545–2556

doi:10.1098/rsta.2009.0054
e contribution of 16 to a Theme Issue ‘Crossing boundaries: computational science, e-Science
global e-Infrastructure I. Selected papers from the UK e-Science All Hands Meeting 2008’.

uthors and addresses for correspondence: Center for Computation & Technology, Louisiana
te University, Baton Rouge, LA 70803, USA (promita@cct.lsu.edu; sjha@cct.lsu.edu).

2545 This journal is q 2009 The Royal Society

http://rsta.royalsocietypublishing.org/


P. Chakraborty et al.2546

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
increase. But often, problem sizes of interest are so large that they cannot be run
on any available single resource. Additionally, using an increasing number of
processors for a tightly coupled simulation has its own challenges, as message
passing, the dominant paradigm for developing tightly coupled applications, is
reaching its limits of scalability—at least for some applications.

Significant effort continues to be invested in scaling-up the performance of
applications. Critical as this endeavour is, there are limitations, because beyond
some point additional efforts will have diminishing returns. Not surprisingly, the
metric of maximum concern to the bulk of scientists is not peak performance (say
measured in Tflops), but total time-to-solution (Ts). To a first approximation,
the total Ts can be decomposed into run-time (Trun) and wait-time for requested
resources to become available (Twait) (this is often just the queue wait-time).
Ironically, although much attention has been focused on reducing Trun, little
attention, at least comparedwith the former, has been devoted to reducing the latter.

Jobswith larger processor count requirements are typically associatedwith longer
wait-times than jobs with smaller processor counts. Additionally, the wait-time of a
job in a queue depends on the estimated job duration (maximum wall-clock time
requested), as well as the number of processors needed. At present, most users tend
to submit jobs, however large, to a single machine, as opposed to a set of machines
over a distributed environment. This has two main advantages: (i) the job runs
faster and (ii) it consumes less CPU hours than that in a distributed environment.
The disadvantages are: (i) the job requires all resources to be available on a single
machine, instead of distributing the load, and (ii) the job experiences larger wait-
time in queue than when it is distributed across several machines.

Interestingly, although the dominant computational model for high-
performance computing has involved using only a single resource, with advances
in grid technologies, high-performance simulations over multiple resources are
now feasible (Manos et al. 2008). In this case, decomposing a simulation to use
two or more resources is a natural response to the failure of a given system to
meet peak demand; thus such decomposition can be referred to as an example of
needful decomposition. However, users normally consider multiple machines only
when the number of nodes required by the job is greater than what a single
machine can provide; needful decomposition is not the only situation under
which multiple, distributed resources can or should be used.

This motivates some questions. Can otherwise monolithic jobs running on
single resources be distributed over more than one machine such that there is an
overall reduction in the time-to-solution? What are the challenges in doing so?
What is the performance? And what system-level support is required to make
such decomposition strategies meaningful/usable?

Although the capability to launch a single tightly coupled task over two
different resources exists, different workloads and queueing systems make using a
distributed job challenging in practice. As we will show in §3, tightly coupled
simulations, such as those using MPICH-G2, go into essentially a stalled
state, waiting for all resources to become available. A commonly used approach
is that of invoking the service of a co-scheduler, such as the Highly-Available
Resource Co-allocator (HARC; http://www.cct.lsu.edu/harc/) or the Grid
Universal Remote co-allocator (GUR; http://www.ncsa.uiuc.edu/UserInfo/
Resources/Hardware/TGIA64LinuxCluster/Doc/coschedule.html). Although the
specific algorithms and implementation details of the co-schedulers differ, most
Phil. Trans. R. Soc. A (2009)

http://www.cct.lsu.edu/harc/
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster/Doc/coschedule.html
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster/Doc/coschedule.html
http://rsta.royalsocietypublishing.org/


2547Submission modes for time-to-solution

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
co-schedulers require the prior permission of system administrators to make a
reservation. We propose a solution that, with some minor caveats, is essentially
in user space and does not require the pre-negotiation of advance reservation rights.

In this paper, we will demonstrate the feasibility of decomposition of a tightly
coupled simulation, to support novel submission modes as a strategy to reduce
the effective time-to-solution; we refer to such decomposition as a type of
opportunistic decomposition. We will briefly discuss the development and
performance of a parallel molecular dynamics (MD) code and its generalization
to work on multiple distributed machines (using MPICH-G2). We benchmark
and validate the performance of our application over multiple input datasets of
varying size. The primary aim of this work, however, is to show that jobs can
finish sooner (i.e. lower time-to-solution) by an appropriate configuration of
resource requests—defined as a selection of the number of processors and
machines, even though the peak performance might be poorer. Or, formulated in
a way that would make Zeno1 proud: how to finish sooner by running slower!

The outline of this paper is as follows. In §2, we describe our parallel MD code,
the models and test-beds used. In §3 we narrate and depict the control flow for
job submission to a single machine as well as multiple machine(s), and highlight
the difference in environments. In §4 we present results—on job runs, actual
wait-times taken and wait-time predictions from Batch Queue Predictor
(BQP)—formulate the necessary equations, and show that often the time-
to-solution is lower in the distributed mode, in spite of higher run-time values.
Our conclusions and some discussion related to other work are presented in §5.
2. Tightly coupled simulations: background information

Owing to the frequent communication requirement, MD codes are typically
deployed on tightly coupled machines. It is often difficult to scale message
passing codes to beyond O(1000) processes. Inter-process communication
bandwidth requirements are not very large, but MD codes are latency sensitive.
Thus, although MD simulations are not naively suitable for distributed
parallelism, our aim is to see whether new ways of ‘distributing’ such
applications can yield better performance, not only in terms of speed, but also
in terms of other issues such as queue wait-time, load balance, etc., and to see
whether current grid implementations support this paradigm.

We developed a parallel MD code (Chakraborty & Jha 2008) using MPICH-G2
and CCC, based on the serial MD code Mindy2. Our domain decomposition was
not complex; we simply divided the dataset and the number of atoms among the
available processors.We studied the performance of this parallelized and distributed
MD code initially on LONImachines (Bluedawg, Zeke andDucky clusters) and then
on TeraGrid machines (NCSA and SDSC TeraGrid clusters). LONI (Louisiana
Optical Network Initiative) is a Louisiana-wide network of supercomputers
connected by light paths, and is connected to the TeraGrid (TG). The NCSA
(National Center for Supercomputing Applications) and SDSC (San Diego
Supercomputer Center) TG clusters are IA-64 machines.
1An ancient Greek philosopher who formulated paradoxes that defended the belief that motion and
change are illusory.
2Available from the NAMD website http://www.ks.uiuc.edu/Research/namd.

Phil. Trans. R. Soc. A (2009)

http://www.ks.uiuc.edu/Research/namd
http://rsta.royalsocietypublishing.org/


P. Chakraborty et al.2548

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
We used the BQP (http://spinner.cs.ucsb.edu/batchq/invbqueue.php) to get
an estimate of the wait-time of jobs on NCSA and SDSC TG clusters. Currently,
BQP tools provide two types of estimates for a given set of job characteristics:
(i) they can estimate a statistical upper bound on job wait-time in the queue
prior to execution and (ii) given a start deadline, they can calculate the
probability that the job begins execution by the deadline. We used the second
option. It is to be noted that BQP predictions are for single machines only.

In order to avoid confusion and to retain clarity, we define some terminology
that we use in this paper. By job submission to a single machine, we mean that
the user specifies that the whole job is to be submitted to a specific single
machine (stand-alone) available on the grid. By job submission to multiple
machines, we mean that the user specifies that a single job is to be divided (into
sub-jobs) among a particular set of machines available. Thus a sub-job is a part
of a single job that is submitted to one of a set of machines, not a smaller piece of
job submitted to a node of a machine. Time-to-solution (Ts) is a measure of the
sum of run-time and queue wait-time for a job.
3. Control flow for job submission: single and multiple machines

Often, a job is remotely submitted through Globus, using a Resource Specification
Language (RSL) submission file that contains information about the specific
machine(s) for job submission, the number of processors needed, the maximum
wall-clock time, etc. Once the job is submitted, control passes to the Globus
Resource Allocation Manager (GRAM). The RSL file is parsed to get the
resource(s) information. The GRAM gatekeeper interacts with the job schedulers
and submits the jobs to the respective scheduler(s). Some examples of job
schedulers are LoadLeveler (on the LONI IBM P5 clusters) and PBS (on Queen
Bee). If a job is submitted to a singlemachine, the local scheduler adds the job to the
queue, where it waits until requested nodes become available. The local resource
manager (RM) assigns the available processors to the waiting jobs, often using first
in, first out or other fairness principles. When a message passing interface (MPI)
job starts executing, anMPI environment/communicator is created and initialized
withN processes. If the job does not finish execution within the specified wall-clock
time value provided by the user in theRSLfile, theRMkills it. So, users should have
a good idea of the time the job might take to execute. On the other hand, if the
wall-clock time value provided is too large, the jobs may stay in the queue longer.

If a job is submitted tomultiplemachines using a single submission (with a single
RSL file), the process is more complicated. The code needs to be compiled using
MPICH-G2. The GRAM gatekeeper interacts with all the machines requested by
the user, and the respective job schedulers put the sub-jobs in the respective queues.
Here, the RMs might not be able to allocate processors to all the sub-jobs
simultaneously. When the first set of resources is allocated, the sub-job in that
machine initializes the MPI environment, and waits for responses from
other machines. While the sub-job is waiting for other sub-jobs to start, it is
officially in a run state from the point of view of the local RM, and if it waits for
too long it will be killed. Hence, it is important that the sub-jobs in all the different
machines are started simultaneously. Figure 1a,b shows the control flow for job
submission to a grid for a single machine and for multiple machines, respectively.
Phil. Trans. R. Soc. A (2009)

http://spinner.cs.ucsb.edu/batchq/invbqueue.php
http://rsta.royalsocietypublishing.org/


MPI / MPICH-G2 handles
the head node and other nodes

through communicator(s)

MPICH-G2 environment initializes
and maintains communication between

nodes using MPI communicator(s).
It interacts with RMs (resource

managers) for all machines.

resources (processors)

resource
manager

(RM)

job
added to

queue

job scheduler

GRAM gatekeeper

GRAM gatekeeper

RM
(machine 1)

sub-job 1 sub-job 2 sub-job n

...

RM
(machine 2)

RM
(machine n)

submitted through Globus

standard
input/
output/
error

job

job

RSL file

RSL file

RM allocates the requested resources

submitted through Globus

(a) (b)

Figure 1. (a) Control flow for job submission to a single machine; the dotted rectangle represents a
single machine. MPI/MPICH-G2 creates an MPI Communicator World to keep track of the
communication between different processors in the machine. (b) Control flow for job submission to
multiple machines; each dotted rectangle represents a single machine. By communicating with the
RM and GRAM, the MPICH-G2 environment ensures that the sub-jobs on all the distributed
machines are allocated the required number of processors.

2549Submission modes for time-to-solution

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
4. Results and discussion

We used two physical systems as models for our experiments: alanine and
bacteriorhodopsin (BrH). Alanine is a 66-atom polypeptide and BrH is a crystal
structure containing 3762 atoms.
(a ) Performance results and resource usage

(i) Distributed MD performance results on LONI

Initially, our aim was to test only the feasibility of running a single parallel job
across multiple machines, and to quantify the performance of the job. We
executed the parallel Mindy code on three IBM AIX P5 clusters, Bluedawg (BL),
Ducky (DU) and Zeke (ZE), on LONI. Here, we provide the data and a
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


Table 1. Performance on single machines using eight processors in each case.

(a) CPU seconds for BrH model

time steps Tr(BL) Tr(DU)

100 0.2 0.2
1000 2.4 2.4
10 000 23.9 23.9
100 000 232.9 235.3
1 000 000 2518.6 —

(b) CPU seconds for alanine model

time steps Tr(BL) Tr(DU) Tr(ZE)

50 000 5.6 5.6 6.0
100 000 11.1 11.2 12.2
1 000 000 110.6 111.9 121.1
10 000 000 1098.7 1113.97 1207.0
100 000 000 — 10860.1 11054.9

Table 2. Performance comparison as measured by the total computational time (CPU seconds
required) on Ducky when using different numbers of processors for 105 and 106 time steps (for BrH
model). (Px, number of processors; Tr, run-time.)

100 000 time steps 1 000 000 time steps

Px no. of nodes Tr (s) CPU seconds Tr (s) CPU seconds

12 2 118.8 1426.1 1249.6 14 995.2
24 3 46.8 1123.7 487.96 11 711.0
32 4 36.7 1175.5 374.3 11 977.0
40 5 32.5 1299.6 333.3 13 331.2
48 6 29.6 1420.0 299.2 14 358.2
56 7 28.7 1606.1 288.99 16 183.3

P. Chakraborty et al.2550

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
quantitative analysis for it, and we estimate the performance degradation
associated with distributed job submission. On LONI the wait-times for our jobs
were trivial—of the order of a few minutes (although there were cases when
jobs were killed while waiting in queue for a long time, due to the system being
overloaded). Hence, we concentrated on run-time, Tr, i.e. CPU seconds used,
only. The total amount of CPU time consumed for a simulation was calculated
using the formula: CPU secondsZtime taken!number of processors, where time
taken is measured in seconds. Table 1a,b highlights the application’s performance
on individual LONI machines; Table 1a shows the performance on BL and DU
separately when the code runs on eight processors (on a single node) using the
BrH model. Table 1b shows the same for the alanine model, with machines BL,
DU and ZE. The table shows that the processing time is proportional to the
number of time steps over which the simulation is run. Thus, at the largest time
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


Table 3. A comparison of the time taken (in seconds) by DU alone, with the time taken on DU and
ZE (combined) for different processor configurations (for BrH model). (PD, performance
degradation; Px, number of processors; Tr, run-time.)

DU DUCZE

PD (%)time steps Px (x) Tr (s)
CPU
seconds Px (xCx) Tr (s)

CPU
seconds

1000 8 2.4 19.5 4C4 3.0 23.8 22.05
10 000 23.9 191.5 29.3 234.3 22.35
100 000 235.3 1882.7 288.5 2308.1 22.59

1000 16 0.7 11.1 8C8 0.8 13.4 20.72
10 000 7.7 123.7 9.4 149.6 20.94
100 000 76.2 1219.0 92.6 1481.9 21.57

1000 32 0.1 3.7 16C16 0.1 3.8 2.70
10 000 3.6 116.0 3.9 124.0 6.90
100 000 36.7 1175.5 40.1 1282.7 9.12

0

200
400
600
800

1000
1200
1400
1600 (a) (b)

20

C
PU

 s
ec

on
ds

200
400
600

800
1000
1200
1400

40 60
time steps (×103) time steps (×103)

80 100 120 0 20 40 60 80 100 120

Figure 2. A performance comparison of the time taken (in seconds) by a single machine versus two
machines at a time (for BrH) on LONI: (a) 16 (DU; diamonds) versus 8C8 (DUCZE; squares)
processors; and (b) 32 (DU; diamonds) versus 16C16 (DUCZE; squares) processors.

2551Submission modes for time-to-solution

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
step values, it is valid to assume that initial/transient/set-up effects are no
longer relevant. The table also shows that the performance of BL and DU are
essentially the same, to within a few per cent.

Having established that start-up effects no longer contribute at 105 time steps, we
measured the computational time required (Tr) as the processor count was varied on
DU (table 2). As shown in the table, for the BrH model, there is a speed-up as the
processor count is increased up to 24 (although not a slope of unity); after which,
increasing the processor count leads to a net increase in computational cost.

Table 3 compares the computational time (CPU seconds) for the BrH model
when run on DU (stand-alone) with the computational time taken when run on
DU and ZE (combined) for a range of different processor count configurations. We
see that the performance in the distributed environment degrades between 2 and
22 per cent (approx.) compared with the performance on a single machine.
Furthermore, on increasing the number of processors, the performance improves
and the degradation percentage decreases (figure 2a,b). This raises interesting
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


Table 4. A comparison of the time taken (in seconds) by NCSA and SDSC TeraGrid cluster
machines for different processor configurations (for BrH model). (Px, number of processors; Tr,
run-time; Tw, wait-time.)

NCSA SDSC NCSA C SDSC

time
steps Px Tr Tw Px Tr Tw Px Tr Tw

1000 8 3.67 306 8 3.83 450 4C4 6.74 78
10 000 35.77 306 38.12 456 65.83 78
100 000 352.85 306 371.23 456 657.20 78

1000 16 3.01 1050 16 3.67 1272 8C8 8.74 510
10 000 27.33 1062 35.77 1266 85.83 516
100 000 240.96 1062 352.85 1278 857.20 516

P. Chakraborty et al.2552

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
possible usage modes, i.e. instead of spending extra hours in queue waiting
for resource allocation, whether parallel code should be distributed over
multiple machines.
(ii) Distributed MD performance results on TeraGrid with emphasis on wait-time

After testing on LONI, we performed similar experiments on the TeraGrid.
But unlike on LONI (where wait-times were often negligible), here we also
recorded the wait-time taken by the jobs. The TeraGrid environment proved to
be more challenging than LONI owing to the size of the virtual organization and
multiple resource providers with separate policies; LONI resources used for this
experiment, by contrast, were essentially identical—in terms of both policy
and infrastructure.

Table 4 compares the computational time (in seconds) for the BrH model,
when run on NCSA and SDSC clusters (stand-alone), with the computational
time taken when run on both the NCSA and SCSC clusters (combined), for a
range of different processor count configurations. We observe that the run-time
of jobs is proportional to the number of time steps calculated, as on LONI.
Roughly, for a 10-fold increase in time steps, the run-time for the jobs increased
10-fold. However, the most interesting thing to note is the behaviour of the wait-
time. Although the wait-times remained more or less constant for increasing time
steps (i.e. for increased run-times), they increased dramatically for increasing
number of processors. Moreover, jobs run on NCSA and SDSC combined had
significantly shorter wait-time than those run on either, alone. Hence, we
concluded that an overall reduction in the time-to-solution in distributed mode is
feasible, in spite of the fact that stand-alone machine run-times were far less than
that in the combined (distributed) scenario.
(iii) Opportunistic distributed resource usage (BQP)

For single resources, the BQP (http://spinner.cs.ucsb.edu/batchq/invbqueue.php)
provides users with the probability of running a job on a number of nodes
within a certain pre-selected deadline. As BQP predictions are for single
Phil. Trans. R. Soc. A (2009)

http://spinner.cs.ucsb.edu/batchq/invbqueue.php
http://rsta.royalsocietypublishing.org/


Table 5. BQP data for NCSA and SDSC TeraGrid clusters (for QueueZdque for both). The BQP
user provides the value of the number of processors to be used and a best estimate for the run-time
required; based upon that, BQP returns a value of the wait-time on a resource for different
probabilities. We choose a value of approximately 0.6; our results are not sensitive to the specific
value of probability chosen. (Px, number of processors; Tr, run-time; Tw, wait-time (times
measured in seconds).)

Px estimated Tr probability approx. Tw (NCSA) approx. Tw (SDSC)

8 900 0.61 530 780
1800 0.61 2130 4200
3600 0.61 2130 4200
7200 0.61 5150 8100

16 900 0.61 2130 4200
1800 0.61 2130 4200
3600 0.61 5150 8100
7200 0.61 5150 8100

2553Submission modes for time-to-solution

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
machines only, we first estimated the wait-time in queue separately for each of
the machines involved using the BQP tool. We then combined the results to
get the approximate wait-time for the two machines—the NCSA and SDSC TG
clusters (table 5). We then used this as estimated average wait-time, in order to
attempt to reduce the total time-to-solution over multiple resources. The use of
BQP keeps the entire scheduling decision and resource co-allocation in user space
(as opposed to when using advanced reservations).

Table 5 shows the estimated wait-time as calculated by BQP for the NCSA
and SDSC TG clusters. We see that, in some cases, higher run-times do not cause
the wait-times to increase. This was also supported by actual run results in
table 4, where the wait-time does not increase with the number of time steps.
Now, if we consider jobs with run-time of 900 s from table 5, we see that for
eight processors the approximate wait-time is 530 s; we got the same value for
four processors (not shown here); but for 16 processors, the wait-time jumps to
2130 s. Hence, if we distribute this job into two eight-processor sub-jobs across
the two machines, the wait-time is reduced by a factor of 4, although the run-
time might increase by 10–20 per cent as was observed earlier (tables 3 and 4).
So, the net time-to-solution decreases in the distributed mode in such cases.

Overall, in designing a multiple-machine job submission paradigm, BQP
prediction can help us in two ways. First, it can help us to decide whether it is
beneficial to distribute (as in the case discussed above) and second, if beneficial,
it tells us what the expected wait-time in the distributed paradigm is.
(b ) Quantitative decision making

Let Twait(i,q) be the wait-time and Trun(i,q) be the run-time for a job on
machine i using q processors. If Ts(i,q) is the estimated time-to-solution of a job
on machine i using q processors, then Ts(i,q)ZTwait(i,q)CTrun(i,q). For jobs
spread over multiple machines: Ts(i,qi;j,qj;.)ZMax[Twait(k,qk)CTrun(k,qk)], k in
{i,j,.}, where the Max is computed over all the machines used.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


P. Chakraborty et al.2554

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
We have obtained the wait-time in two different ways: directly from job runs,
and from BQP data. BQP provides an estimate of Twait(i,q), which varies quite
significantly not only with i (i.e. different resources have different load levels at a
given time), but also for different values of q for the same i (for example,
Twait(mymachine, 16)/Twait(mymachine, 32)). Thus by estimating the values
of Trun(i,q), the optimal values of i and q can be determined so as to find the
minimum Ts.

For the single machine i (either NCSA or SDSC) using 16 processors, let
Ts(i,16)ZTrun(i,16)CTwait(i,16); and for the two machines (NCSA and SDSC),
let Ts(NCSA,8;SDSC,8)ZTrun(NCSA,8;SDSC;8)CTwait(NCSA,8;SDSC,8).
From data collected on TeraGrid and LONI, we obtained

Trunði; 8; j; 8ÞzaTrunði; 16Þ; where 1:1%a%1:2;

for 10–20 per cent performance degradation, where a is a measure of performance
degradation in switching from one machine to multiple machines.

Based upon empirical (reproducible) observation on the TG, we find

Twaitði; 16ÞOOTwaitðNCSA; 8;SDSC; 8Þ;

which often holds true for a range of processor counts, and i could be either the
NCSA or SDSC IA-64. For example, for an estimated run-time of 900 s for 16
versus 8C8 processors,

TwaitðNCSA; 8;SDSC; 8ÞzbTwaitði; 16Þ;

where b is a measure of the relative wait-times for one machine versus multiple
machines and is empirically approximately 0.37 for NCSA machines and 0.19 for
SDSC’s IA-64. This derives from the data for wait-times: for NCSA, they are
530 and 2130 s, for SDSC they are 530 and 4200 s for 8 and 16 processors,
respectively, while for NCSACSDSC, the maximum wait-time is 780 s. Hence,
overall, time-to-solution is

TsðNCSA; 8;SDSC; 8ÞZTrunðNCSA; 8; SDSC; 8ÞCTwaitðNCSA; 8; SDSC; 8Þ
z aTrunðNCSA; 16ÞCbTwaitðNCSA; 16Þ
z 1:2TrunðNCSA; 16ÞC0:37TwaitðNCSA; 16Þ
Z ðTrunðNCSA; 16ÞCTwaitðNCSA; 16ÞÞ

Cð0:2TrunðNCSA; 16ÞK0:63TwaitðNCSA; 16ÞÞ:

For distribution to be beneficial (ideal case),

ð0:2TrunðNCSA; 16ÞK0:63TwaitðNCSA; 16ÞÞ%0

or

TrunðNCSA; 16Þ%3:15TwaitðNCSA; 16Þ:

Thus, for all future jobs, with a predicted wait-time of Twait(NCSA,16), we
can safely distribute those jobs for which the expected Trun(NCSA,16)
is 3.15Twait(NCSA,16). However, in the practical world, we may have
situations where
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


2555Submission modes for time-to-solution

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
ð0:2TrunðNCSA; 16ÞK0:63TwaitðNCSA; 16ÞÞO0:
Thus, it is often a trade-off between acceptable wait-time versus additional CPU
hours spent. It is important to point out that there are fluctuations due to
changing work and queue loads in the values of the various parameters, e.g. a and
b, and Twait. However, the general results hold irrespective; specifically, the BQP
result factors in these fluctuations in its probabilistic predictions.
5. Conclusion

In this paper, we have highlighted the need for and advantages of distributed job
submission. We started from a simple, sequential MD code, parallelized it and
extended it to run over distributed resources using MPICH-G2. Importantly, we
showed that when running over multiple machines, even when simulating
relatively small physical models, the performance is comparable with when
running on a single machine. This formed the basis for the next phase of our
work: investigating submission modes for a tightly coupled simulation in order to
reduce Ts. Our approach was to circumvent the static model of fixing the number
of processors on a predetermined set of resources using a co-scheduler; by
contrast, we adopted an agile-execution model, where we determined the best
resource and configuration to use almost at run-time.

We also have shown that, on average, the wait-time for a job submitted to a
single machine can be longer than the wait-time of the same job when
decomposed and submitted to multiple machines. We postulate that this is due
to the typically lower resource requirement per machine. When combined with
sophisticated tools such as the BQP, which provides a good estimate to a first
approximation of the probability of a job to run in a given window, opportunistic
decomposition has the clear potential to increase throughput—to lower wait-
times significantly with relatively insignificant increase in CPU usage. We
contend that this is the first documented work to use a prediction tool such as
BQP at deployment (i.e. just before run-time) to decompose tightly coupled
simulations effectively.

It is important to note that such opportunistic scheduling is not guaranteed to
be successful; distributing over multiple machines will not always lower wait-
times, as it is conceivable that the wait-time for any one of the small jobs on a
machine could be larger than the wait-time for a single simulation on a larger
machine, if not indefinitely long in the pathological case.

Although we show a reduction in Ts for a tightly coupled simulation
decomposed over multiple machines, our approach is sufficiently general that we
can decompose a large job into smaller jobs even on a single machine and still
find a reduced Ts. Hence, the claim is that this is a novel submission mode. Also,
it is worth mentioning that our approach is valid for ensembles of simulations,
including high-throughput computing, where optimal aggregation strategies of
‘small jobs’ into ‘big jobs’ can be made. In some ways, the aggregation approach
is the reverse of the decomposition approach, but it can be implemented across
different machines. We will report results on this in a future paper.

This work is a part of the Cybertools project (http://www.cybertools.loni.org/) and is supported
by NSF/EPSCoR award no. EPS-0701491. The authors would like to thank Wei Huang for help in
generating large test models.
Phil. Trans. R. Soc. A (2009)

http://www.cybertools.loni.org/
http://rsta.royalsocietypublishing.org/


P. Chakraborty et al.2556

 on 18 May 2009rsta.royalsocietypublishing.orgDownloaded from 
References

Chakraborty, P. & Jha, S. 2008 Design and performance analysis of a distributed HPC molecular
dynamics code. In MG ’08: ACM SIGAPP 15th Mardi Gras Conf., Poster paper, Baton Rouge,
LA, USA. Washington, DC: ACM SIGAPP.

Manos, S., Mazzeo, M., Kenway, O., Karonis, N., Toonen, B. & Coveney, P. 2008 Distributed MPI
cross-site run performance using MPIg. In HPDC ’08, Poster paper, Boston, MA, USA,
pp. 229–230. Washington, DC: ACM.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

	Novel submission modes for tightly coupled jobs across distributed resources for reduced time-to-solution
	Introduction
	Tightly coupled simulations: background information
	Control flow for job submission: single and multiple machines
	Results and discussion
	Performance results and resource usage
	Quantitative decision making

	Conclusion
	This work is a part of the Cybertools project (http://www.cybertools.loni.org/) and is supported by NSF/EPSCoR award no. EPS-0701491. The authors would like to thank Wei Huang for help in generating large test models.
	References


