
Critical Perspectives on Large-Scale Distributed
Applications and Production Grids

Shantenu Jha1,2,3, Daniel S. Katz4,1,5,
Manish Parashar6,7, Omer Rana8, Jon Weissman9

1Center for Computation & Technology, Louisiana State University
2Department of Computer Science, Louisiana State University

3e-Science Institute, University of Edinburgh
4Computation Institute, University of Chicago

5Department of Electrical and Computer Engineering, Louisiana State University
6NSF Center for Autonomic Computing, Rutgers University

7Department of Electrical and Computer Engineering, Rutgers University
8Department of Computer Science, Cardiff University

9Department of Computer Science, University of Minnesota

Abstract—It is generally accepted that the ability to develop
large-scale distributed applications that are extensible and in-
dependent of infrastructure details has lagged seriously behind
other developments in cyberinfrastructure. As the sophistication
and scale of distributed infrastructure increases, the complexity
of successfully developing and deploying distributed applications
increases both quantitatively and in qualitatively newer ways. In
this paper we trace the evolution of a representative set of “state-
of-the-art” distributed applications and production infrastructure;
in doing so we aim to provide insight into the evolving sophisti-
cation of distributed applications – from simple generalizations
of legacy static high-performance to applications composed of
multiple loosely-coupled and dynamic components. The ultimate
aim of this work is to highlight that even accounting for the
fact that developing applications for distributed infrastructure
is a difficult undertaking, there are suspiciously few novel and
interesting distributed applications that utilize production Grid
infrastructure. Along the way, we aim to provide an appreciation
for the fact that developing distributed applications and the theory
and practise of production Grid infrastructure have often not
progressed in phase. Progress in the next phase and generation
of distributed applications will require stronger coupling between
the design and implementation of production infrastructure and
the theory of distributed applications, including but not limited
to explicit support for distributed application usage modes and
advances that enable distributed applications to scale-out.

I. INTRODUCTION: CONTEXT, SCOPE AND OUTLINE

Significant strategic investments coupled with tremendous
technical advances have resulted in distributed computa-
tional infrastructures that integrate computers, networks, data
archives, instruments, observatories and embedded sensors,
with the overarching vision of enabling new paradigms and
practices in computational science and engineering. Several
large-scale distributed applications have also demonstrated the
potential benefits of such infrastructures and have provided new
scientific insights in their disciplines. However, such applica-
tions have been relatively few, and have also demonstrated
the costs, in terms of time and resources, associated with
developing, deploying, and managing the applications.

There are many factors responsible for the perceived and
genuine lack of large-scale distributed applications that can
seamlessly utilize distributed infrastructures in an extensible

and scalable fashion. We believe that at the root of the problem
is the fact that developing large-scale distributed applications
is fundamentally a difficult process, for reasons such as the
need to coordinate distributed data and computation. This is
true, irrespective of whether data is transported to where the
computation takes place, or if computation is decomposed and
transported to the location of data, or a hybrid of the two
approaches is adopted. Commonly acceptable and widely used
models and abstractions remain elusive. Instead, many ad-hoc
solutions are used by application developers. The range of tools,
programming systems, and environments is bewilderingly large,
making extensibility and interoperability difficult. Deployment
and execution concerns are often disjoint from the development
process. Against this backdrop, the distributed infrastructure
available to scientists continues to evolve, in terms of scale and
capabilities as well as complexity. Support for and investments
in legacy applications need to be preserved, whilst at the same
time facilitating the development of novel and architecturally
different applications for new and evolving production envi-
ronments. As we will demonstrate, the process of developing
and deploying large-scale distributed applications presents a
critical and challenging agenda for researchers and developers
working at the intersection of computer science, computational
& application sciences and cyberinfrastructure development.

Distributed versus Parallel Applications: To enhance an
appreciation of distributed applications, and to set the stage for
a discussion of a set of specific applications in Section III, we
will begin with a brief definition and discussion of distributed
applications. In particular, we will try to understand some of
their basic characteristics as contrasted with those of their better
known parallel counterparts. Distributed applications utilize
multiple resources, or are capable of utilizing them. One could
argue that any application that would benefit from increased
peak performance, throughput, or reduced time to solution, by
using multiple compute and distributed data resources, can be
classified as a distributed application.

The complexity of developing applications for such large-
scale problems stems in part from combining the challenges
inherent in high-performance computing and large-scale dis-

978-1-4244-5149-4/09/$26.00 2009 IEEE 10th IEEE/ACM International Conference on Grid Computing1

tributed systems. In traditional high-performance computing,
performance is paramount, and systems are typically homo-
geneous, assumed to be almost failure free (at least histori-
cally), and applications operate within a single administrative
domain. Performance, as measured by peak utilization, is often

considered a secondary concern for distributed systems, which
is a reflection of the fact that the concerns and objectives
for distributed applications are broader, including issues of
scalability, heterogeneity, fault-tolerance and security. In ad-
dition, distributed applications differ from monolithic, parallel
applications in that their execution modes, heterogeneous en-
vironments, and deployment are important characteristics and
they determine the requirements and even the performance and
scalability of the application.

Not only do the usage requirements that drive distributed
applications differ from those of typical parallel applications,
but the nature and characteristics of distributed applications are
also different from those of parallel applications. Ref [1] intro-
duced the concept of Application Vectors – defined as attributes
that help understand the primary characteristics of distributed
applications, and importantly, provide insight into possible
mechanisms for their development, deployment, and execution,
and discussed how distributed applications typically differ
from traditional HPC applications along each of the execution,
communication, and coordination vectors. More often than not,
parallel applications are monolithic entities and the challenge
is to determine a scalable way to decompose these applications
while maintaining stringent requirements on communications.
In contrast, distributed applications are mostly either naturally
decomposable or are existing, loosely-coupled components and
the challenge often is to find mechanisms that permit the
effective coordination of these components. In other words,
for parallel applications skillful decomposition is required; for
distributed application skillful composition is required. Another,
almost fundamental difference between distributed applications
and traditional parallel applications is the notion of a static ex-
ecution model versus a dynamic execution model. Most paral-
lel/cluster applications are developed with a model that assumes
a specific execution environment with well-defined resource
requirements/utilization and control over these resources. Thus,
most parallel applications are not developed with the flexibility
to utilize additional resources during execution, even though
some may have varying resource requirements during execution
(arising say, from some “interesting” computational result).
Such a static execution model has clearly carried over into the
domain of distributed applications and has, in a way, defined the
first-generation of distributed applications and, unfortunately,
the first-generation of production High-Performance Grids such
as the TeraGrid and DEISA. However, given the fact that the
computational and scheduling requirements of the individual
components can change, as well as the fact that the distributed
execution environment is less controlled and more variable
than traditional parallel environments, it is fair to assume
that distributed applications should, more often than not, be
developed so as to explicitly support dynamic execution. As
we will discuss, there are many distributed applications that by

Usage Mode Number of Users
Batch Computing on Individual Resource 850
Exploratory and Application Porting 650
Science Gateway Access 500
Workflow, Ensemble and Paramater Sweep 250
Remote Interactive Steering and Visualization 35
Tight-Coupled Distributed Computation 10

TABLE I
TeraGrid Usage Mode distribution for 2006, the latest year for which data is

available. Notice the small proportions of users/applications that utilize

multiple resources collectively – concurrently or otherwise

definition require support for dynamic execution models.

Scope and Outline: This paper undertakes an integrated
analysis of distributed applications and production Grid infras-
tructure (PGI). Although related to Ref [1], this paper supple-
ments it by taking a different and arguably novel approach.
We discuss representative PGI and applications in Section II
and III respectively. Our approach is to choose a representative
set of four applications; our selection, must, by definition be
constrained. We choose applications that are either representa-
tive of a broader class of applications, or serve as prototypes
of important advances in the style of development or type of
distributed applications. Not surprisingly, a time-ordering of the
applications shows an increasing level of sophistication. Early
applications were mostly trivial generalizations of applications
with static execution – spatial and temporal; later applications
relatively more dynamic and distributed – in execution and data
handling (I/O). In Section IV (Critical Perspectives), we provide
an integrated but coarse-grained analysis of applications and
PGI, that amongst other things, shows that developments and
advances in distributed applications have often been out of
phase with production infrastructure capabilities and offerings.
We hope to both suggest mechanisms to bridge the chasm for
current PGI and prevent a repeat in the next generation of
upcoming distributed cyberinfrastructure, such as XD and EGI.

II. PRODUCTION GRID INFRASTRUCTURE
The large number of production and research Grid projects

that have emerged over the past few years is testimony to
the potential and importance of distributed cyberinfrastructure.
However, we limit the number of PGI analyzed to two; the
choice is admittedly determined by the familiarity of the
authors, but we believe they capture the main aspects of most
PGI. Thus the first PGI studied (TeraGrid) primarily, though not
exclusively, caters to computationally intensive applications,
and the second (Open Science Grid) primarily to data-intensive
applications. Interestingly, similar PGI models exist in Europe,
where DEISA and EGEE are the counterparts to the TeraGrid
and OSG, respectively.

1) TeraGrid: The TeraGrid [2] is an open scientific dis-
covery infrastructure combining leadership class resources at
eleven partner sites to create an integrated, persistent com-
putational resource. It began in 2001 when the U.S. National
Science Foundation (NSF) made an award to four centers to es-
tablish a Distributed Terascale Facility (DTF). The DTF became
known to users as the TeraGrid, a multi-year effort to build
and deploy the world’s largest, fastest, most comprehensive,
distributed infrastructure for general scientific research.

The initial TeraGrid specifications included homogeneous

2

clusters capable of 11.6 teraflops, disk-storage systems of
more than 450 terabytes of data, visualization systems, data
collections, integrated via Grid middleware and linked through
a 40-Gbps optical network. The initial vision of this system was
very “griddy”, with users foreseen to be running on multiple
systems, both because their codes could run “anywhere”, and
because in some cases, multiple systems would be needed to
support the large runs that were desired. The software that
made up the TeraGrid was a set of packages that needed to
be identical on all systems.

The TeraGrid has since expanded in capability and number
of resource providers – with roughly four expansion phases in
2002, 2003, 2006, and 2007. In 2002, NSF made an Extensible
Terascale Facility (ETF) award to expand the initial TeraGrid to
integrate Pittsburgh Supercomputer Center’s flagship machine.
This introduced heterogeneity and thus added complexity to
the Grid ideals of the initial DTF, as the common software no
longer could be completely identical. This led to the concept of
common interfaces, with potentially different software under-
neath the interfaces. To further expand the TeraGrid’s capabili-
ties, NSF made three Terascale Extensions awards in 2003. The
new awards added to the TeraGrid access to neutron-scattering
instruments, large data collections, additional computing and
visualization resources. In 2004, as a culmination of the DTF
and ETF programs, the TeraGrid entered full production mode,
providing coordinated, comprehensive services for general U.S.
academic research. In 2005, NSF extended support for the
TeraGrid with a set of awards for operation, user support
and enhancement of facilities. In 2006, the users of national
center supercomputers (at NCSA and NPACI) were merged
into TeraGrid, which led to TeraGrid increasing its focus
on supporting these users and their traditional parallel/batch
usage modes. In 2007-08, three additional TeraGrid resource
providers were added.

Using high-performance network connections, the TeraGrid,
the world’s largest, most comprehensive distributed cyberin-
frastructure for open scientific research, now integrates high-
performance computers, data resources and tools, and high-end
experimental facilities around the US. The TeraGrid software
stack is now a set of capabilities with common interfaces. Sites
can choose to either include or not include these kits as part of
their local software.

Table I provides instructive information about how the Tera-
Grid is primarily used. Interestingly, the TeraGrid is primarily
used as several independent HPC resources, and often not
collectively as a single system. Users submit jobs to the batch
queues of the particular system on which they want to run their
application. Users are encouraged to use the TeraGrid User
Portal to monitor the batch queues and to use the batch queue
predictor to assist them in selecting the systems that will be
best suited to their needs. Users may request special handling
of jobs, including access to dedicated system time, to address
special job processing requirements. Single-identity/credentials
and global file-systems have been common outstanding requests
from the user community; the former is partially implemented
now, and the latter is being researched, with some initial

Application Type Characteristics & Examples
Simulation CPU-intensive, Large number of independent jobs.

e.g., Physics Monte Carlo event simulation
Production
Processing

Significant I/O of data from remote sources e.g,
Processing of physics raw event data

Complex Work-
flow

Use of VO specific higher-level services; Dependen-
cies between tasks e.g., Analysis, Text mining

Real Time Re-
sponse

Short runs; Semi-guaranteed response times, e.g.,
Grid operations and monitoring

Small-scale Par-
allelism

Allocation of multiple CPUs simultaneously; Use of
MPI libraries, e.g., Protein analysis, MD

TABLE II
TYPES OF APPLICATION RUNNING ON THE OPEN SCIENCE GRID

implementations on a subset of systems existing now.
2) Open Science Grid : The Open Science Grid (OSG) [3]

is a collaborative activity, where stakeholders come together to
pool resources and build a shared environment for the common
benefit of all stakeholders. The largest contributors of resources
and also the largest users of the OSG are from the High
Energy Physics community, specifically associated with the
Large Hadron Collider (LHC), ATLAS and CMS (Compact
Muon Solenoid) experiments. The integrated software that OSG
offers on its resources is the Virtual Data Toolkit (VDT) [4],
which includes many (possibly-customized) software packages
that enable access to the OSG compute and storage resources.
The data and processing needs of the LHC led to the LHC
Computing Grid (LCG). This was brought together with the
Grid3 project and other, smaller projects, to create the OSG
and its European peer, EGEE (Enabling Grids for E-sciencE)
around 2004-5.

In contrast to TeraGrid, the OSG has encouraged distributed
resource utilization, for example, OSG users must use a remote
job launch mechanism to start their work, unlike TeraGrid.The
OSG is also different from the TeraGrid in its model of resource
aggregation. Resource Providers have to apply and be approved
by a central (funding) agency in order to join the TeraGrid,
whilst interested parties can voluntarily join the OSG.

Applications running on the OSG span simulation and analy-
sis of small to large-scale (CPU days to centuries) scientific ap-
plication runs. The OSG facility architecture has special utility
for high-throughput computing applications. The characteristics
are large ensembles of loosely coupled parallel applications for
which the overhead in placing the application and data on a
remote resource is a fraction of the overall processing time.
Also, added value is available to computations (loosely coupled
and able to run on heterogeneous sites) that can take advantage
of opportunistic resources. Table II summarizes the types and
characteristics of applications running on the OSG. Any partic-
ular application may have one or multiple such characteristics:
simulation, production processing, complex workflow, real time
response and small-scale parallelism.

Usage of the computational resources through the OSG is
one of three modes: Guaranteed through ownership by the
user’s community; Agreed upon through policies between the
resource owner and the user’s community; Or opportunistic
use through resource sharing. When communities make their
resources accessible through the OSG, they define the policies
of their use. Resource owners retain control of their resources

3

including: prioritization of use, which communities and users
to support, and policies of access. As members of the OSG
consortium, resource owners are encouraged to provide access
to available resources (typically of the order of 10% or more)
to other communities for specific computational goals as well
as dynamic use of currently available cycles. Opportunistic use
is a hallmark of the OSG.

III. SPECIFIC APPLICATIONS

The choice of applications discussed is determined by the
coverage they provide, the specific class of applications they
represent, and/or the fact that they represent an underlying trend
or shift in a capability. In addition to a brief description of each
application, we attempt to provide a description of degree of
distribution of the application and the key paradigms that each
application represents, as well as how applications have evolved
as the underlying infrastructure changed.

1. SF Express: The Synthetic Forces Express (SF Express [5])
project began in 1996 with the goal of investigating the use
of high-performance computers as a means of supporting very
large-scale, distributed interactive simulations. It was one of the
first successful examples of metacomputing, utilizing separate
stand-alone multi-site supercomputers, used initially to demon-
strate a scalable communications architecture supporting tens
of thousands of vehicles. It emerged as a distributed application
harnessing multiple high-performance computational resources
to meet the demands of large-scale network-based distributed
simulations. SF Express was “Grid-enabled” – able to incre-
mentally incorporate services and interfaces afforded by the
evolving Grid environment. The underlying paradigm is a data
parallel application structure where entities are simulated in
parallel and communication is performed based on “regions of
interest”. A hierarchical communication paradigm was used to
aggregate communication across gateway machines at each site.
MPI was used for inter-machine communication.

The first major milestone for SF Express was achieved
in November 1996, with the successful simulation of more
than 10,000 vehicles using the 1024-processor Intel Paragon.
In 1997, SF Express was extended to include multiple high-
performance computers. A simulation of 50,000 vehicles was
achieved using 1,904 total processors on six computers at sites
distributed across seven time zones.

To improve the functionality and validity of large-scale dis-
tributed simulation experiments and to address issues including
scenario distribution, resource configuration, resource manage-
ment, information logging, monitoring, and fault tolerance, SF
Express used services provided by the Globus Metacomputing
Toolkit. In 1998, a record-breaking simulation was conducted
using 100,298 vehicles – the largest, distributed, interactive bat-
tlefield simulation up to that date. This simulation was executed
on 1,386 processors that were distributed over 13 computers
among nine sites that spanned seven time zones. Global and
local services were decoupled, allowing the application to run
in a flexible, resource-aware environment. As far as underlying
distributed infrastructure, SF Express leveraged Globus support
for remote execution and communication. Significant changes
to the Globus architecture and interface over the years meant

that the application had to undergo cumbersome changes too.
While co-allocation would, in principle, be needed for SF-
Express to run, it was not available at the time, so it appears
that manual reservations and on-demand access to the machines
for the executions were required.

2. SETI: The Search for Extraterrestrial Intelligence
(SETI) [6] uses radio telescopes to listen for signals from
space. Such signals are not known to occur naturally, so a
detection would provide evidence of extraterrestrial technol-
ogy. Radio telescope signals consist primarily of noise (from
celestial sources and the receiver’s electronics) and man-made
signals such as TV stations, radar, and satellites. SETI projects
analyze the data digitally, with a virtually unlimited need for
computing power. Previous SETI projects used special-purpose
supercomputers located at the telescope to do the bulk of the
data analysis. In 1999, a virtual supercomputer composed of
large numbers of donated wide-area Internet-connected comput-
ers (SETI@home) was launched. SETI’s paradigm is master-
worker, with the master having a near infinite supply of work
(tasks) for the workers. The SETI client runs continuously when
the machine is idle (screen saving is running). It fetches a chunk
of data from a server, analyzes the data, and reports the result
back to the server. The same data may be analyzed by multiple
computers for integrity checks. Volunteer computers are incen-
tivized by gaining “credits” for performing SETI tasks. The
degree of distribution within SETI is vast, containing individual
PCs spanning many continents, all running asynchronously.

SETI did not rely upon any existing production Grid infras-
tructure and still does not. It requires continuous on-demand
access to resources, a requirement not met by the queue-
based paradigms of supercomputer-based Grids. SETI led to the
formation of BOINC in 2002-2003, an open-source volunteer
computing framework. BOINC is both a middleware infrastruc-
ture and a specific deployment platform. The current BOINC
deployment contains over 500,000 computers and 1.7 PFlops
of computing power. BOINC continues to evolve supporting
newly emerging clients (e.g. GPUs) and advanced features
such as client data caching and project-defined replication
and verification procedures. Many groups have used BOINC
successfully to establish their own volunteer Grids.

3. Montage: Montage [7] is an exemplar workflow applica-
tion that is used both for constructing astronomical image mo-
saics and for testing workflow software and ideas. It consists of
a set of tools, each of which is a C executable. Each executable
reads and writes to/from files. Given a set of initial images to be
mosaicked, and the bounds of the output image, it reprojects the
input images to the output projection, finds overlaps between
pairs of images, fits planes to the overlaps, solves a set of
equations to minimize the overlap differences, applies the
calculated background rectifications to each reprojected image,
then co-adds the reprojected, background-rectified images into
a final mosaic. Most of these stages involve a number of steps
that can be done in parallel, e.g. the reprojection of each of the
input images, but there are interstage dependencies.

Putting this together, there are a few different ways to use the
Montage tools. One is to use a single computer by running a

4

script that goes through each stage, and within each stage runs
through each element of processing. On a parallel computer,
the various elements within a stage can be parallelized over
the set of processors; Montage supplies MPI routines to do
this. Finally, the dependencies between the processing can be
represented as directed acyclic graph (DAG), using a Montage-
supplied tool, and this DAG can then be enacted on a single
computer, a parallel computer, or a distributed set of computers,
using a variety of tools, but often in the distributed case using
Pegasus, Condor DAGman, and Condor-G. This version of
Montage is often used behind a portal, where the users don’t
need/want much knowledge about the resources being used.

For the case of a single computer or a parallel computer, or
even a distributed computer with a shared global file system,
each Montage component will have access to the outputs of
components that have already run. For a general distributed set
of computers, output data from one tool running on one system
needs to be transferred to the system on which the next tool
is going to run. The Pegasus/DAGman/Condor-G set of tools
handles this automatically. However, there are issues remaining
with the mapping of executables to resources in the distributed
case. Ideally, one would like all of the mapping and execution
to be dynamic and “just-in-time”, but this is not possible today.
Also, with schedulable or monitorable networks, one would like
to be able to schedule work that includes data transfers with
knowledge of network bandwidth over time, or the ability to
reserve bandwidth for when needed.

Montage was developed to meet science goals and to be
customizable, even on a single computer, with the knowledge
that just using one computer would be too time consuming
for many real problems. Fitting the results of this process into
the parallel and distributed computing arenas has been fairly
straightforward, as the idea of a set of executables that can be
described by a graph is probably the most general idea that is
supported on all production infrastructures.

4. LEAD: Linked Environments for Atmospheric Discovery
(LEAD [8])aims at making meteorological data, forecast mod-
els, and analysis and visualization tools available to anyone who
wants to interactively explore the weather as it evolves. LEAD
software enhances the experimental process by automating
many of the time consuming and complicated tasks associated
with meteorological science. The LEAD workflow tool links
data management, assimilation, forecasting, and verification
applications into a single experiment. The experiment’s output
also includes detailed descriptions of the product (metadata).
LEAD includes a portal that hides the details of the resources
(data, models, analysis and visualization tools, and HPC re-
sources).

A major underpinning of LEAD is dynamic workflow or-
chestration and data management: Workflow Orchestration for
On-Demand, Real-Time, Dynamically-Adaptive Systems (WO-
ORDS). WOORDS provides for the use of analysis tools,
forecast models, and data repositories not in fixed configu-
rations or as static recipients of data, as is now the case
for most meteorological research and operational forecasting
technologies, but rather as dynamically adaptive, on-demand,

Grid-enabled systems that can, a) change configuration rapidly
and automatically in response to weather; b) continually be
steered by new data; c) respond to decision-driven inputs from
users; d) initiate other processes automatically; and e) steer
remote observing technologies to optimize data collection for
the problem at hand. Although mesoscale meteorology is the
particular problem to which the WOORDS concept is being
applied, the methodologies and infrastructures being developed
are extensible to other domains such as medicine, ecology,
oceanography and biology.

Some of the parts of the LEAD system that are dynamic
include: running models more frequently when the weather
is changing more quickly, running models on different grids
as needed to resolve dynamic features, running ensembles of
varying size, varying the number of instruments used for data
ingestion, making dynamic use of computing platforms and
networks, and allowing a variety of usage scenarios.

Some parts of LEAD are similar to Montage, but it is a
much more complex application overall. The authors are not
aware of any general computer science work being done with
LEAD outside of contributors to the LEAD project, unlike
Montage, where at least ten different computer science projects
have chosen to use Montage to demonstrate some aspect of
their systems. Additionally, LEAD is often data-driven, where
Montage is purely user-driven. While Montage can take advan-
tage of many types of computing systems, LEAD was written
specifically for distributed systems.

IV. A CRITICAL ASSESSMENT OF DISTRIBUTED
APPLICATIONS AND PRODUCTION GRID INFRASTRUCTURE

The discussion in the previous sections of this paper and ear-
lier references [1] clearly indicate that distributed computational
infrastructures – both existing (Grids) and emerging (Clouds)
– provide tremendous capabilities and opportunities, and can
potentially support scientific and engineering investigation at
unprecedented scales. However, despite an overwhelming need
and great potential, the number of production-level, large-scale
high performance distributed applications has been relatively
small and the effort required to bring these applications to
fruition has been high. Some reasons include, but are not
limited to: (1) in general, distributed applications present unique
challenges resulting in increased complexity, and often have
complex structures that compose multiple patterns at different
levels as well as at different phases of application execution; (2)
emerging distributed computational infrastructures present sig-
nificant operational challenges, which constrain the capabilities
provided to distributed applications; (3) appropriate abstractions
that simply and efficiently support prevalent application patterns
and that can be used by the applications to address development
and deployment challenges are lacking, and finally (4) issues
of policy, infrastructure design decisions (narrow versus broad
Grids [9], research infrastructure versus production infrastruc-
ture) and the harmonization of its development with application
requirements are also important barriers.

The lack of explicit support for addressing these challenges
of distributed applications on distributed infrastructure become
both self-fulfilling and self-perpetrating. For example, a con-

5

sequence of the small number of distributed applications is
that most PGI do not support these application as well, which
in turn, further increases the effort required to develop new
applications. For example, as previously discussed, there are
a relatively small number of distributed applications on the
TeraGrid, which led to a focus on supporting single site
applications (or more generally, legacy localized applications.)

Looking back, production Grid application and deployments
can be analyzed along multiple axes: (1) the way the application
formulation perceives and uses the Grid environments, (2) the
ability of application formulations to address the challenges
of distributed Grid environments outlined above, and (3) ab-
stractions and programming support available for implementing
and running the applications on Grids. For example, in cases
where no programming support was available and application
development and deployment relied on the “hero program-
mer”, there has been very limited sustainable success, if any.
However, even in cases where significant programming support
was available, success strongly depended on the suitability of
the application formulation and the ability of the distributed
computing paradigm used to address the Grid challenges
outlined above. For example, high-throughput or parameter
sweep type formulations based on master/worker or bag-of-
tasks paradigms, which perceive the Grid as a pool of resources,
have been extremely successful as these formulations can very
effectively handle heterogeneity, dynamism and failures, and
are supported by relatively mature programming systems such
as Condor and BOINC. Similarly, loosely coupled application
workflows that also handle these challenges and are supported
by programming systems have seen similar successes. On the
other hand, applications based on the MPI paradigm have had
limited success even though they were supported by MPICH-
G and were shown to result in an overall reduced time-to-
completion, even if there was a minor increase in the total
CPU time consumed [10]; this suggests that generalizing from
the traditional HPC to distributed HPC requires support beyond
programming abstractions and systems. However, as the use of
workflow systems has demonstrated, some HPC applications
can be developed by aggregating components (which may wrap
complete applications), executing in their own native deploy-
ment environments. This aspect needs further investigation, and
has not been effectively exploited in the Grid community.

Furthermore, and somewhat ironically, distributed applica-
tions (as well as the supporting systems) have typically been de-
veloped/formulated to hide from the heterogeneity, dynamism,
and distributed nature, as opposed to developing them in a
way that they can embrace these features. Heterogeneity and
dynamism have been identified as major barriers in the uptake
of distributed systems and the development of distributed
applications. This approach is clearly not sustainable; it results
in applications that are brittle and very closely tied to their
target Grid infrastructure [11]. The rest of this section further
expands on these observations.

1) Programming Systems for Distributed Applications:

Many applications have used distributed infrastructure to ad-
vance understanding in their disciplines. A number of applica-

tions have been able to use existing programming systems and
tools, without having to worry about customized extensions.
For example, multiple applications have used the abstractions
provided by MPICH-G2 to address distributed communica-
tion and coordination. Co-scheduling capabilities have existed
(HARC and others) and have been used/needed in several
applications. Similar observations can be made in the way
dataflow coordination is supported across multiple resources.

However, there also exist a number of applications that
have had to implement new capabilities at one or more lev-
els, i.e., at the application, programming system, middleware,
and/or infrastructure level. Such crosscutting (functional and
non-functional) issues include hiding delay, providing fault-
tolerance, addressing data/system uncertainty, addressing se-
curity (including privacy and integrity issues), and supporting
dynamic discovery and adaptation, among others. Specific
examples include composition (workflow) systems that enable
the specification (and, in some limited context, enforcement) of
QoS requirements, and component/service-based programming
systems that are extended to support dynamic resource-sensitive
bindings and policy-driven runtime adaptations. In general,
where abstractions, underlying tools, and programming systems
have been developed to support just one application, or at most
a few, the level of success of these efforts depended not only on
the resulting programming system, but also on the suitability
of the underlying paradigm for Grid environments.

It is important to understand why some programming sys-
tems and tools have been widely used and others have not.
Condor and BOINC are two of the more widely used tools
supporting distributed applications, which has as much to do
with the programming models they support and enable as any
other reason. The success of BOINC may be based on its singu-
lar capability: to provide applications with huge resource pools.
Donated nodes do not interact and the model is fairly simple.
Programmers may be willing to learn new paradigms and re-
structure programs if the new model is simple. In addition, as
an added feature, BOINC is flexible. Extending widely used
tools with which users are already comfortable to distributed
versions seems to be a promising pathway. A similar story holds
for Condor: users can program their applications in familiar
languages and the environment takes care of distribution.

As was mentioned, many existing programming systems are
not widely used by application developers. Often, developers
prefer to “roll out their own” capabilities, even though many
of these capabilities already exist in available programming
systems. Utilizing existing programming systems would enable
the developer to focus on specifics of the application, rather
than the implementation of such core infrastructure. But as this
is often not possible, the lack of reusability thus has the effect
of further supressing distributed application development. Thus,
it can be asked in this context, why have application developers
not considered using capabilities from an existing programming
system (such as CCA) to support the required capability? This
may be due to a number of factors: (a) Many programming
systems lack robustness when used by developers in scientific
applications – for instance, they may have limits on scalability.

6

(b) The level of maturity and development schedule of the
programming system may not align with the requirements of
the application developers. (c) It may be difficult to isolate a
specific capability from a programming system, thereby limit-
ing re-use by an application developer requiring that capability.
In general, programming systems fall short of the requirements
of distributed applications due to:

i. Incompleteness: Programming systems and tools are often
incomplete or inflexible with respect to application needs,
e.g., tools that support the master-worker paradigm often only
address failures of workers and not of the master. Furthermore,
they may not address non-functional issues such as security and
privacy, which may be critical for some applications.

ii. Customization: Programming systems and tools also tend
to be customized to applications and their requirements, with
limited concern for reuse or extensibility. Applications and
tools are also often highly dependent on (and tuned to) a
specific execution environment, further impacting portability,
re-usability, and extensibility.

2) Distributed Applications and Production Grids: It is
important to mention that we are not going to address the
operational issues associated with Production Grid Infrastruc-
ture, which although both non-trivial and interesting, are not
in the scope of this distributed-application-centric discussion.
Many of the operational challenges associated with production
Grid infrastructure, outlined in Ref. [12], will remain valid
independent of the issues that we focus on. The match be-
tween the application formulation and the Grid infrastructure
significantly impacts how successfully the application can use
the Grid. In case of applications that are performance critical,
it is necessary to customize the environment and architecture,
but for the majority of applications, the greater concerns are
those of simplicity, extensibility, low time-to-productivity, and
usability. Just as the choice of the right algorithm can overcome
the use of “faster” or “better” hardware, to an extent, the choice
of the appropriate infrastructure, in terms of what usage modes,
policies and types of computing are supported, can override
simple architectural or performance differences.

Evolution of Supported Capabilities and Infrastructure: Un-
derstanding the evolution of certain infrastructure capabilities
in response to application and user needs is both instructive
and interesting. Given OSG’s need to support HTC, Condor
has evolved from a scavenging system in the late 80s to
becoming the basic block for Grid infrastructure in the 2000s.
Condor Flocking, which provides aggregation of resources, is
a fine example of a continuous transition versus discontinuous
transition. Similarly, experiences from SETI@Home led to
BOINC, which was then used for other @Home applications.

Science Gateways on the TeraGrid grew out of a number
of computationally-saavy application developers who realized
that others in their communities would benefit from the Ter-
aGrid resources, if the interfaces to use the resources could
be simplified. The gateways that have been developed often
use a graphical user interface to hide complexity, but provide
capabilities such as: workflows, visualization software and
hardware, resource discovery, job execution services, access to

data collections, applications, and data analysis and movement
tools. Another common aspect of many science gateways is
the idea of a community account, where the gateway developer
applies for a TeraGrid allocation on behalf of a community,
and members of that community then use the allocation without
individually having to register with TeraGrid. Because of this,
the TeraGrid does not currently have a good way of reliably
counting science gateway users, but the number of cycles used
through science gateways increased by a factor of five from
2007 to 2008. By working with some of the initial gateways
developers, the TeraGrid has developed capabilities that can be
used by other developers to build new gateways.

However, there are several examples where the requirements
of distributed applications are often out of phase with the
deployed capabilities of infrastructure. One example of such
out-of-phase development and deployment, is the capability of
co-scheduling on production Grids. Another is the ability to
create a DAG and then just run it over multiple resources, e.g.
on the TeraGrid. Co-scheduling is an interesting case study,
because it involves both policy and technical challenges. The
policy issues have been a barrier because of the inability or
the lack of willingness of HPC centres to relinquish the batch-
queue mode of operation. The resource providers’ preference
for batch-queue computing and corresponding emphasis on
overall utilization of HPC resources has inhibited other modes
of computing, such as urgent computing, ensemble, and QoS-
based computing (e.g., user X will be allowed Y number of
jobs over period Z.)

There are also external reasons to promote the use and
importance of specific classes of applications. For example,
the emergent ease and abundance of sensor data and thus the
effectiveness in coupling real-time simulations to live sensor
data has driven the class of dynamic data-driven distributed
applications scenarios (DDDAS). When coupled with the matu-
rity of workflow tools (a natural framework for the composition
of DDDAS,) an increase in LEAD-style applications is to be
expected. There are similar reasons why other distributed appli-
cations “come of age”; anticipating these trends and supporting
them on PGI would be beneficial to the wider scientific commu-
nity. Currently, neither the OSG nor the TeraGrid can support
large-scale DDDAS out of the box and without significant
customization. OSG supports opportunistic and HTC but not
large-scale HPC, whilst the TeraGrid supports HPC but does
not natively support dynamic or opportunistic requirements.

Underlying infrastructure and capabilities change quicker
than the timescale over which scientific distributed applications
once developed are utilized. In addition to SFExpress, another
example of an application that has been around for a long time
and has successfully transitioned from parallel to distributed
infrastructures is Netsolve, which has branched and evolved
into GridSolve. It is worth noting that although underlying
distributed infrastructure may change rapidly, for example,
the sudden emergence and prominence of Clouds, the basic
principles and requirements of distribution do not change, viz.,
the fundamental problem of coordinating distributed data and
computation remain. Therefore it is imperative that distributed

7

application developers consider developing their applications
using programming systems, tools and interfaces that provide
immunity from the natural evolution of infrastructure and ca-
pabilities. Well designed distributed programming abstractions
can be critical in supporting these requirements [13].

3) Miscellaneous Factors: Various other factors have also
contributed to the current state of affairs with production
Grid infrastructures and distributed applications. These include
the role of standardization, funding agencies, and other geo-
political issues. For example, the changing funding landscape
in the US has directly impacted the progression of Grid
research, as well as the design of the current national Grid
infrastructure. For example, the TeraGrid has moved from its
original vision of a run-anywhere distributed infrastructure,
with the middleware and tools to support this vision, to the
remit of supporting all scientific users and applications. The
changing focus of the funding agencies may also be one reason
why more researchers have focused on localized and high-
throughput computing, rather than on more complex problems
such as robust distributed workflows that can scale-out, or
making co-scheduling capabilities widely available.

Another significant factor worth discussing is the role of
standardization, as driven by bodies such as the OGF [14]. It
has been argued that these efforts, though well intended and
useful, were premature, i.e., that the nature of requirements of
Grid infrastructure and applications were still evolving, and not
ready for standardization. Yet again, there is a bit of a chicken-
and-egg situation: applications don’t really utilize distributed
resources and thus do not cry out for standards, and thus re-
source providers (or funding agencies) don’t feel compelled or
motivated to support standards. Focused and simple standards
are a good idea that represent efforts in the right direction; they
should be encouraged, especially as the current crop of PGI
transition into their next-generation incarnations. For example,
the job submission specification troika of JSDL, HPC-Basic
Profile and OGSA-Basic Execution Service (BES) [15] provide
the basic community agreement to standardize job-submission
across different heterogeneous resources.

V. CONCLUSIONS

In summary, with the luxury of hindsight, many theories
and explanations can be developed to explain the current state
of production Grid infrastructures and distributed applications.
For example, it may be said that perhaps there were unreal-
istic expectations, in terms of how challenging it would be
to design (and operate) Grids that would support a range
of distributed applications, or the effectiveness of designing
production Grids as extended clusters around traditional HPC
applications. This has prevented developers from clearly under-
standing the requirements of targeted distributed applications
and their implications on the design of software and hardware
infrastructure. Production Grids for distributed applications
clearly warrant fundamentally different sets of assumptions and
design decisions. Conversely, it can be argued that the effort
of transitioning HPC applications to effective distributed HPC
applications was underestimated.

There isn’t a single unifying paradigm (such as message-
passing for parallel programming) that can be used to enable
distributed applications; this is a reflection of the fact that the
concerns and objectives for distributed applications are both
large in number and broad in scope. This has important ramifi-
cations. For example, there isn’t a single (if not simple) design
point (such as performance for HPC applications) around which
to architect production distributed systems. Additionally and as
a consequence, at one level, the range of tools, programming
systems and environments is bewilderingly large, making ex-
tensibility and interoperability difficult; at another level, there
exists insufficient support for the development of distributed
applications integrated with deployment and execution of even
common usage modes. Addressing the issues and gaps identi-
fied universally for all applications and usage modes will not
happen anytime soon, but addressing them in the context of a
well-defined set of scientific applications and usage modes on
PGI is both achievable and should be the next step. We hope
that the upcoming generation of PGI – XD, PRACE, EGI, will
find some of this analysis timely and useful.

ACKNOWLEDGEMENTS

This paper is an outcome of the UK e-Science Institute spon-
sored Research Theme on Distributed Programming Abstrac-
tions. We would like to thank many people who participated
in the workshops and meetings associated with the theme. We
would like to thank Ruth Pordes and Paul Avery for sharing
their insight into OSG.

REFERENCES

[1] Abstractions for Large-Scale Distributed Applications and Systems, sub-
mitted to the ACM Computing Surveys, S. Jha et al, draft available at:
http://www.cct.lsu.edu/∼sjha/dpa publications/dpa survey paper.pdf.

[2] C. Catlett. The Philosophy of TeraGrid: Building an Open, Extensible,
Distributed TeraScale Facility. In Cluster Computing and the Grid, 2002.

2nd IEEE/ACM International Symposium on, pages 8–8, May 2002.
[3] R. Pordes et al, New science on the Open Science Grid, 125, pg 012070,

Journal of Physics: Conference Series (2008).
[4] The Virtual Data Toolkit web site, http://vdt.cs.wisc.edu/.
[5] Synthetic Forces Express, http://www.cacr.caltech.edu/SFExpress/.
[6] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer. SETI@home: an experiment in public-resource computing.
Commun. ACM, 45(11):56–61, 2002.

[7] J. C. Jacob, D. S. Katz, G. B. Berriman, J. Good, A. C. Laity, E. Deelman,
C. Kesselman, G. Singh, M.-H. Su, T. A. Prince, and R. Williams. Mon-
tage: A grid portal and software toolkit for science-grade astronomical
image mosaicking. International Journal of Computational Science and

Engineering, 3, 2007.
[8] B. Plale et al, CASA and LEAD: Adaptive Cyberinfrastructure for Real-

Time Multiscale Weather Forecasting, Computer, 39 (11), 2006.
[9] S. Jha et al, Using clouds to provide grids with higher levels of abstraction

and explicit support for usage modes, Concurrency and Computation:
Practice and Experience, 21 (8), 2009.

[10] P. Chakraborty et al, Novel Submission Modes for Tightly-Coupled Jobs

Across Distributed Resources for Reduced Time-to-Solution Phil Trans R
Soc A Vol. 367, 1897 (2009).

[11] Parashar and Brown. Conceptual & Implementation Models for the Grid.
IEEE, Special Issue on Grid Computing, 93(2005):653–668, 2005.

[12] W. Gentzsch. Top 10 Rules for Building a Sustainable Grid,
OGF Thought Leadership Series, http://www.ogf.org/TLS/documents/
TLS-Top10RulesForSustainableGrid.pdf.

[13] A Merzky et al, Application Level Interoperabilty between Grids and
Clouds, Workshop on Grids, Clouds and Virtualization, GPC09 (Geneva).

[14] Open Grid Forum, http://www.ogf.org.
[15] OGF Specification Summaries http://www.ogf.org/UnderstandingGrids/

grid specsum.php.

8

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript

	Previous View

	Search

	Also by Manish Parashar
