
11. Embedded/Real-Time Systems

Daniel S. Katz, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
USA and Jeremy Kepner, MIT Lincoln Laboratory, Lexington, MA, USA

11.1 Introduction

Embedded and real-time systems, like other computing systems, seek to maximize
computing power for a given price, and thus can significantly benefit from the advancing
capabilities of cluster computing. In addition to $/Mflops/s, embedded and real-time systems
often have severe constraints on size, weight and power as well as latency and reliability.
Satisfying these constraints are usually achieved by reducing components such as disk
drives, memory and access ports. These additional constraints have traditionally led too
more customized solutions within a limited marketplace. More recently, embedded computer
vendors have adopted the practice of using clusters of mainstream RISC processors
configured in rack-mounted cabinets. In addition, many cluster vendors are adopting their
rack-mounted systems to more compact environments. Reliability constraints in these
markets have traditionally been handled by traditional fault avoidance (e.g. applying higher
quality and more expensive fabrication procedures on older designs) and fault tolerance (e.g.
replication) techniques. While effective, these techniques tend to work against the goals
(cost, power, size and weight) of embedded real time systems.

This section of the paper seeks to provide an overview of the cluster computing technology
found in the embedded computing world. We begin with a brief description of some of the
major applications that use embedded computers. The next two sections present hardware
issues (processors, interconnects and form factors) and software issues (operating systems
and middleware). Finally, we conclude with a discussion of the current trend towards
embedded systems looking more like clusters and clusters looking more like embedded
systems.

11.2 Applications

In this section, we briefly discuss three application areas that are driving the development of
embedded clusters.

11.2.1 Space Applications

One area where embedded clusters are being examined is in space. Space-borne instruments
are providing data at ever increasing rates, far faster than is feasible to send the data to
Earth, and the rate of growth of the data from the instruments is faster than the rate of
growth of bandwidth to Earth, so this problem will only get worse in the future. One obvious
answer to this is to process the data where it is collected, and to only return the results of the
analysis to Earth, rather than the raw data. (A similar argument can be made regarding the
signal delay between Earth and space when considering autonomous missions, leading to the
same answer: placing the computing where the decisions must be made.)

Traditionally, very little data analysis has been done in space, and what has been done has
relied on radiation-hardened processors. These processors are quite old by the time they
complete the radiation-hardening process, and do not solve the problem of bandwidth
limitation. A proposed solution is an embedded cluster of COTS (Commercial-Off-The-Shelf)
processors, where the processors can be selected and placed in the system shortly before
mission launch. In as much as COTS processors are not radiation hardened, this requires



software that can detect and correct errors caused by the cosmic ray environment found in
space. Such a system (intended to deliver 99% reliability through using multiple layers of
fault detection and mitigation, starting with application-based fault-tolerance for parallel
applications [[1]]) is being developed by the Jet Propulsion Laboratory under the Remote
Exploration and Experimentation Project [2]. Initial tests appear to demonstrate that many
common linear routines such as fast Fourier Transforms (FFTs) and linear algebra, which
consume a large fraction of CPU time in many data processing applications, can be wrapped
to enable detection of greater than 99% of errors of significant size at a cost on the order of
10% overhead in fault-free conditions [3]. The Project’s current models predict that common
hardware such as a PowerPC 750 would see about 2.5 single event upsets (SEUs; random
transient bit flips) per hour, and off-chip cache would see about 1 SEU per Mbyte per hour
in either low-Earth orbit or Deep Space [4]. These are low enough numbers to make
software-implemented fault tolerance (SIFT) appear viable, although this cannot be proven
without significant testing.

The constraints of the space environment (mass, power, size, resistance to vibration, shock,
thermal cycling and natural space radiation) demand work in packaging that is very
different than for most ground-based clusters. Additionally, replacement of faulty
components is either impossible or extremely expensive, and uploading new or changing
existing software is very difficult from a system design as well as operational perspective.
Finally, reliability of the software as well as the hardware/system is a significant concern
due to the difficulty in validating computational results, and the potential impact of
erroneous behavior with respect to decision-making and scientific data analysis. Thus, a
different set of requirements exists for space-borne computers.

11.2.2 Signal Processing Applications

The signal processing applications that embedded systems serve are often highly data
parallel and naturally lend themselves to the kind of coarse-grained parallelism ideal to
clusters. However, the Quality of Service (QoS) and latency requirements of real-time
systems usually dictate a need for interconnects with both deterministic performance and
higher performance than are typically found in clusters [5]. Thus the solutions developed to
serve these needs are similar to conventional rack mounted clusters with high performance
interconnects, denser packaging and lighter operating systems.

11.2.3 Telecommunications Applications

In telecommunications, reliability and real-time response have always been critical factors.
Early electronic switching systems used specially designed fault-tolerant computers such as
the AT&T 3b2. With the current explosion in network servers, in order to achieve acceptable
cost it is necessary to use the types of standard commercial machines and operating systems
discussed in this section. This industry is currently experimenting with commodity cluster
systems to solve the problem of meeting their ultra-high reliability and real-time response
constraints while reducing costs.

11.3 Hardware

Form factor is a critical factor in embedded computing. Thus compute density (Gflops/s per
cubic foot and Gflops/s per watt) is often as, or more important, than aggregate processing
power. Typically, embedded system vendors are able to achieve roughly a factor of 10
increase in compute density over conventional systems. These gains are achieved by
constructing boards containing multiple nodes (typically 2 or 4). Each node consists of a low
power processor (e.g., Motorola PowerPC) with a limited amount of memory (e.g. 128



MBytes). In addition, there are no local disks and access to the node is limited to the
interconnect, which may be custom or commodity (e.g. Myrinet), and will have been packaged
to minimize size and power consumption. These various design tradeoffs allow embedded
vendors to fit nearly 100 processing nodes in a volume that can fit underneath a typical office
desk.

As mentioned previously, many embedded systems need to withstand much more severe
conditions than standard clusters. These systems may be used in the aerospace or military
industries, leading to requirements on tolerance to shock, vibration, radiation, thermal
conditions, etc. While many of today's commercial components can handle these conditions,
they are not packaged to do so, as this increases cost and is not needed by most ordinary
users. Thus, for this niche market, different vendors have sprung up to package standard
commercial parts with more consideration of these concerns.

There are a variety of vendors that manufacture systems along the above lines. Mercury,
CSPI, and Sky are three of the more popular systems. Some of the general capabilities are
shown in Table 11.1. For a comparison, a cluster vendor (AltaTech) is also shown.

Vendor CPU Interconnect OS CPU/ft3

Mercury PowerPC Raceway MCOS ~10
CSPI PowerPC Myrinet VxWorks ~10
Sky PowerPC Sky Channel SKYmpx ~10
Alta Intel/Alpha Ethernet/Myrinet Linux ~1

Table 11.1 – General Capabilities

In addition to the vendors that specialize in embedded systems, a number of other companies
build embedded systems, both parallel and distributed for their customers. These vendors
may take systems from the standard vendors listed above and ruggedize and/or repackage
them, and they include many US defense contractors (Lockheed, Honeywell, General
Dynamics, etc.)

Many embedded systems are also targeted for real-time applications with extremely low
latency requirements (e.g., radar signal processing). To achieve these requirements it is often
necessary to adopt a pipeline architecture with different processing occurring at each stage of
the pipeline. Typically, each stage exploits coarse grain parallelism but the 'direction' of this
parallelism is along different dimensions of the data at different steps. To fully exploit a
parallel computer in such circumstances requires transposing (or “corner turning”) the data
between steps. Thus, the interconnects provided by embedded systems often have higher
bandwidth and lower latencies than those of shared memory supercomputers, let alone
clusters of workstations.

11.4 Software

The real-time requirements of embedded systems necessitate special operating systems and
middleware to reduce latency and to fully exploit the interconnects and processors. This has
resulted in a wide variety of Unix flavored operating systems: VxWorks, Lynx, MCOS,
SKYmpx, LinuxRT, IrixRT. Typically, these operating systems trade off memory protection,
multi-user and multi-threaded capabilities to get higher performance. Traditionally,
VxWorks has been one of the most common in many industries. However, the need for
portable software has led many to examine alternative operating systems for embedded
clusters. These include LinuxRT and IrixRT. The advantage of these choices is that software
can be developed (at least to some point) on common desktop machines, and easily



transferred to the embedded clusters. Lynx and other POSIX-compliant systems are used
similarly, under the assumption that software developed on one POSIX-compliant operating
system can be easily ported to another. The primary distinction between these operating
systems and VxWorks is that VxWorks does not provide process-based memory protection,
which may be important in prevention of fault propagation from one process to another.

One of the most significant positive trends in embedded computing has been the adoption of
common middleware libraries to ease portability between systems. The two major areas
where this has occurred are in communications and math libraries. In the past, special
vendor libraries were required to fully exploit their custom networks. Recently vendors have
adopted MPI. With careful optimization, they are able to achieve performance similar to that
of their proprietary libraries. MPI has been a large step forward for the embedded
community, but it does not address all of the communication needs of these systems. This
has led to the development of a message passing standard that provide such critical features
as Quality of Service (QoS), MPI/RT [6]. In addition to MPI/RT, the Data Reorganization
Interface (DRI [7]) has been another standardization effort to provide a common interface to
large data movements.

The mathematics libraries developed by embedded vendors are similar to other optimized
math libraries in that they provide a variety of standard mathematical operations that have
been tuned to a particular processor. The functional focus of the embedded libraries has
primarily been on basic signal processing operations (e.g. FFT, FIR filters, linear algebra) for
complex floating-point data. Because Fortran compilers for these systems are hard to find,
these libraries usually only have a C implementation. One additional feature of these
libraries has been the ability to pre-allocate memory. For most operations, this eliminates
potential latency. Optimized math libraries are critical to achieving real-time performance
and thus these libraries are heavily used in embedded real-time software. This heavy
reliance can lead to a significant portability bottleneck. Fortunately, one of the most
successful efforts of this community has been the adoption of a standardized Vector, Signal,
and Image Processing Library (VSIPL [8]). In addition to being valuable to embedded
systems, this library has a significant potential benefit to the general high performance
computing community.

Creating an optimized implementation of a standard can be a significant undertaking for
embedded systems vendors. Increasingly, these libraries are being implemented by third
party software developers (e.g. MPI Software Technologies, Inc). However, as the embedded
community is a niche market, software vendors generally do not have enough demand to
optimize their products for the variety of embedded systems, and thus products that can
optimize themselves, such as ATLAS and FFTW (as mentioned in section 7 of this white
paper) become increasingly important.

11.5 Conclusions

While there are certainly a number of differences between embedded clusters and standard
clusters that have been brought out in this section, there are also a number of similarities,
and in many ways, the two types of clusters are converging. Mass-market forces and the need
for software portability are driving embedded clusters to use similar operating systems,
tools, and interconnects as standard clusters. As traditional clusters grow in size and
complexity, there is a growing need to use denser packaging techniques and higher
bandwidth, lower latency interconnects. Real-time capability is also becoming more common
in traditional clusters in industrial applications, particularly as clusters become more
interactive, both with people and with other hardware. Additionally, fault-tolerance is
becoming more important for standard clusters: first, as they are increasingly accepted into



machine rooms and subject to reliability and up-time requirements; and second, as feature
sizes and operating voltages are reduced, cosmic-ray upsets will occur more frequently. The
only area that promise to continue to separate the two cluster worlds is the general need for
ruggedized packaging for many embedded clusters.

11.6 References

[1] M. Turmon and R. Granat, Algorithm-Based Fault Tolerance for Spaceborne
Computing: Basis and Implementations, Proceeding of the 2000 IEEE Aerospace
Conference, IEEE, 2000.

[2] REE, http://ree.jpl.nasa.gov/
[3] J. Gunnels, E.S. Quintana-Ortí, R. van de Geijn, and D.S. Katz, Fault-Tolerant High-

Performance Matrix Multiplication: Theory and Practice, in preparation.
[4] J. Beahan, L. Edmonds, R. Ferraro, A. Johnston, D.S. Katz, and R.R. Some, Detailed

Radiation Fault Modeling of the Remote Exploration and Experimentation (REE) First
Generation Testbed Architecture, Proceeding of the 2000 IEEE Aerospace Conference,
IEEE, 2000.

[5] J. McMahon and J. Kepner, VLSI Photonics Interconnects: a Systems Perspective,
Interconnects within High-Speed Design Systems (IHSDS), Santa Fe, NM, May 2000.

[6] MPI/RT, http://www.mpirt.org/
[7] DRI, http://www.data-re.org/
[8] VSIPL, http://www.vsipl.org/


