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Abstract. The primary intention of NASA’s Remote Exploration and
Exploration (REE) project is to use commercial off-the-shelf, scalable,
low-power, fault-tolerant, high-performance computation in space. Most
of the faults caused by the radiation environments in regions of space of
interest to REE (Deep Space, Low Earth Orbit) are transient, single event
effects. Some of these faults can cause errors at different application lev-
els. System and applications software can potentially detect and correct
some or many of these errors. We discuss different software fault toler-
ance approaches such as replication, voting, and masking with a focus on
algorithm-based fault-tolerance. Combined software and hardware ap-
proaches such as fault avoidance, redundancy, masking, and reconfigura-
tion are discussed. These approaches allow trade-offs between reliability,
power, cost, and computation power for spacecraft in a low-to-moderate
radiation environment.

1. Introduction

The Remote Exploration and Exploration (REE) project’s global objective is
to move ground-based supercomputers to space. This means building a high-
performance, reliable, low-power, parallel computer for space applications, using
mostly commercial off-the-shelf (COTS) components. REE intends to achieve
this goal by using software-implemented fault tolerance (SIFT) techniques that
will perform fault detection, isolation, and recovery without compromising relia-
bility or performance. In order to gain experience with SIFT techniques, several
generations of test beds are being built to perform fault tolerance experiments.
These test beds will be provided with a SIFT middle-ware layer residing between
the operating system and the applications, and between the operating system
and the hardware. A software fault injector for simulation of radiation faults
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has been generated to test the system and study its performance. REE has the
goal of a flight test in 2005.

2. Hardware Fault Tolerance

Hardware fault tolerance can be attempted at different levels and in different
ways. Fault avoidance can be defined as using better components or radiation
hardened components to avoid single event upsets caused by cosmic ray hits.
Although this is the only approach chosen by current projects and ranks high in
reliability, the cost of radiation hardened components is the main tradeoff. Power
consumption is higher and computational power is lower than for systems based
on radiation hardened components versus parallel COTS-based systems. Fault
detection would stop the system when a fault occurs. This has the advantage
of identifying fatal errors but at a loss of throughput. Masking redundancy
means running in the presence of faults. A few processors can run the same
program and vote to identify errors in any single processor. Errors can be
masked from application software. No software rollbacks will be required to
fix errors. Reconfiguration means removing failed components from the system.
When failure occurs in a component, its effects on the remaining portion of the
system can be isolated. We are not concerned about how it failed. We expect
to have enough other similar components to take its place. These are typically
off-the-shelf processors, disk (for ground-based test beds only), and memory
units but the desired reliability units e.g., EDAC, CRC checks, may not be built
into these components. A large number of functional units with spares can be
used, which will be switched automatically to replace a failing component. One
can build desired the level of redundancy through system-level algorithms to
coordinate these components.

3. Software Implemented Fault Tolerance (SIFT)

SIFT is a contrasting approach to a fault tolerant multi-processor. Fault isola-
tion can be obtained by physical isolation of failed hardware components. Fault
masking is enhanced through multiple buses or a redundantly linked network
over which multiple copies of data are transmitted. Reliable fault-masking uses
non-faulty elements to compensate for the effects of faulty elements. Voting
takes place as a function of the software. Critical tasks in SIFT are required
to be iterative tasks such that voting is done on the state of data before each
iteration. This guarantees that each processor is working on the same loop. If an
error is discovered in the vote on this state of the system, the software attempts
to locate and remove the faulty components. This can be done by changing
the bus of the presumed faulty processor. If the fault persists after the move,
the processor is retired. If the fault disappears, the bus is returned. Thus, the
SIFT can configure around the fault. Each processor can make a report of a
failed component to the run-time supervisor. Depending on the type of fault, it
may not be decidable which processor, or bus, is actively failing. However, the
system can continue to run in a fault-masking mode (Banâtre & Lee, 1994).

The clocks in SIFT are not necessarily synchronous. This is a major ad-
vantage, as clock synchronization can be a significant added expense.
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Figure 1. Sample 10000s NGST image, before and after deglitching
(Fixsen, 2000).

Replication ensures reliability but is expensive in terms of hardware or run-
time cost. The idea is to take a majority vote on a calculation replicated N
times. A hardware solution requires N times the number of processors, as well
as a reliable voter. Software solutions require each processor to run N copies
of surrounding computations and then vote on the result. This slows down
the computation by at least a factor of N. However, the savings from using
COTS components could offset the added costs. A candidate application for
this approach appears in Figure 1.

3.1. Algorithm-Based Fault Tolerance (ABFT)

In the broadest sense, algorithm-based fault tolerance (ABFT) refers to a self-
contained method for detecting, locating, and correcting faults with a software
procedure. REE is looking at techniques for numerical linear matrix multiplica-
tion, LU decomposition, QR decomposition, single value decomposition (SVD),
and Fast Fourier Transforms (FFT). These techniques typically involve aug-
menting data with a (linear) checksum, whose value is predictably transformed
by the linear algorithm. Checksum encoding is embedded in the data.

ABFT can detect, locate, and correct faults by exploiting the structure of
numerical operations. REE is focusing on error detection, using result checking.
This implies that a simple post-condition exists which can be checked at a cost
that is low compared with the cost of the base algorithm. If (transient) errors
are detected, the routine can be re-run. Many REEs science applications spend
much of their time in core numerical operations; for example, NGST’s phase
retrieval code5 (Figure 2) spends ∼70% of its time on FFTs.

4. Faults and Errors

The radiation environment causes faults at the hardware level; many of which
become errors at the application or system level. About 99.9% of faults are
transient single event effects; faults can cause errors that cause the node or
application to crash or hang. System software can detect such errors. Restarting
the application, rollback, or rebooting will be acceptable solutions in those cases.

Hard to detect errors would change the application data, allowing the ap-
plication to complete but with incorrect output. Applications can detect most
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Figure 2. Sample wavefront corrected by 349 actuator deformable
mirror and primary mirror segments, using NGST’s phase retrieval
code.

errors using ABFT, assertion checking, and other application-level techniques.
The ability to correct errors with low overhead is a major advantage.

Huang and Abraham (1984) proposed the idea of using properties of the
solution as acceptable tests: “Since we test the intermediate results for correct-
ness with respect to the algorithm, the end solution is correct if the intermediate
results are correct. If processor errors occur that do not affect the solution, then
they are not errors.” One application of this principle would be to only detect
and correct processor errors in excess of either the inherent noise of the data set
or the desired accuracy in the end result.

5. Conclusion and Future Work

Combined hardware and software fault tolerance approaches would be most
effective for space-borne components in a harsh environment. The combination
of COTS and SIFT can dramatically lower the cost and power usage while
increasing computation power. “A system should be as simple as possible in
order to achieve its required function—and no simpler” (Banâtre & Lee).

Future work planned for this study includes making provision for corrup-
tion of a counter or corruption of input data during the computation. It is
also necessary to develop a better practical understanding of failure rates to
have confidence in ultimate reliability; methods for detecting faults during the
correction procedures themselves are also needed.
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