
Software must be recognised as an important output of scholarly

research

Caroline Jay1, Robert Haines1, and Daniel S. Katz2

1University of Manchester, UK
2University of Illinois at Urbana-Champaign, USA

Tuesday 17th November, 2020

Abstract

Software now lies at the heart of scholarly re-
search. Here we argue that as well as being
important from a methodological perspective,
software should, in many instances, be recog-
nised as an output of research, equivalent to
an academic paper. The article discusses the
different roles that software may play in re-
search and highlights the relationship between
software and research sustainability and repro-
ducibility. It describes the challenges associ-
ated with the processes of citing and review-
ing software, which differ from those used for
papers. We conclude that whilst software out-
puts do not necessarily fit comfortably within
the current publication model, there is a great
deal of positive work underway that is likely to
make an impact in addressing this.

1 Introduction

Software is transforming scholarly research1

practice, increasing the scale of knowledge
production [1], and—through the automation
of analysis pipelines—putting genuine repro-

1We use “scholarly research” as a general term for
research in science, engineering, humanities, etc.

ducibility of experiments within reach. Where
once studies were conducted in vivo, or in vitro,
they are increasingly being conducted in silico.
Software has also led to the creation of new
forms of analysis and representation, enabling
research or thinking that was not previously
possible: computational models now form the
backbone of many research domains, shifting
the way in which we represent and understand
the world.

Alongside the opportunities offered by com-
putation, there is a conundrum for the re-
search community: whilst software is now
central to the production of research, it is
difficult—arguably impossible—to represent it
adequately in standard scholarly publications.
Documents, in particular peer-reviewed pa-
pers, are currently the primary currency of
scholarly research. Articles, alongside lab
notes, books and reports, combine mathemati-
cal or logical formalisms with a descriptive nar-
rative, allowing others to understand what has
been discovered, and the context in which this
has been achieved.

Software exists to perform processes and cal-
culations that would otherwise be impossible
in practical terms. Whilst we can endeavour
to express an algorithm in pseudocode (a pro-
cess fraught with problems, as the prolifera-

1

ar
X

iv
:2

01
1.

07
57

1v
1 

 [
cs

.C
Y

] 
 1

5 
N

ov
 2

02
0



tion of inaccurate versions of Porter’s stem-
ming algorithm demonstrates [2]), many com-
putational analyses simply cannot be trans-
lated into words or equations [3]. Explaining
what a piece of software does will remain an es-
sential part of reporting research, but provid-
ing access to the code itself is vital to ensuring
the integrity, transparency and reproducibility
of the research. This is part of the process of
making the software FAIR, increasingly recog-
nized as a key element in enabling better and
more productive scholarship [4, 5, 6].

If a computational model or analysis has
complexity that cannot be adequately ex-
pressed in the form of a traditional, text-
format publication, then it follows that the
software should be treated as a research out-
put in its own right, and its creators should be
credited with making a contribution to scholar-
ship. Whilst this may be acceptable in theory,
the paper still rules as the primary measure
of academic achievement in practice, so a re-
think of how we understand and value schol-
arly endeavour is required. Here, we examine
the reasons that software should be considered
as a first class citizen of scholarly research, and
outline the challenges that we must overcome
to achieve this.

2 The role of software in
scholarly research

Software is changing the way we conduct schol-
arly research, in terms of the sophistication of
the analyses we perform and the volume of
data we can process. It supports real docu-
mentation of the research process (known as
provenance), and makes it possible to verify re-
sults, by improving the reproducibility of the
analysis pipeline. Executable notebooks, such
as Jupyter, or R markdown, are a good exam-
ple of this: by interleaving explanations with
software, they make it straightforward to un-

derstand and rerun the way an author has pro-
cessed data. Making software methods, models
and analyses open to others can greatly accel-
erate the rate at which we gather knowledge
and make discoveries. In spite of its value,
however, a great deal of research software re-
mains unpublished and unavailable [7]. This
is potentially a huge loss to scholarly research:
whilst very few recent papers would exist with-
out the aid of software, software stands on its
own, and may have uses that extend far beyond
a single publication [8, 9].

Currently many researchers are not working
as openly as they could. The main reasons re-
searchers give for this are embarrassment due
to perceived poor quality code, a lack of con-
fidence the software is robust for other users
and usages, and the time required to prepare
it for release, including the provision of appro-
priate licensing and documentation [10]. The
second point is particularly troubling: if a re-
searcher is not confident in their own software,
how can they be confident in the results it pro-
duces? Improving the visibility, and therefore
scrutiny, of research software would mitigate
these problems, increasing both the openness
of a project, and the confidence in its conclu-
sions. It is important to note here that valuing
the software in its own right is an important
catalyst to good development. Where the soft-
ware is simply regarded as a means to an end,
rather than an integral part of the research, the
temptation to minimize the time and resources
that go into its creation is high.

Increased openness may be viewed by some
as a burden, but it ultimately has the poten-
tial to benefit researchers and the culture they
work in. A report from the UK Parliamentary
Office of Science and Technology, “Integrity in
Research” [11], puts an emphasis on enforc-
ing the integrity of research outcomes, poten-
tially via regulation, but does not address how
researchers’ everyday practices should evolve
to ensure this outcome is achieved. Telling

2



researchers that they are not working with
integrity—in effect that they are not doing re-
search well—is applying pressure in the wrong
place; while mistakes happen, the vast major-
ity of researchers are working honestly. In-
stead, a focus on promoting openness is likely
to have a much larger impact while fixing the
same problem, as it will naturally increase the
chances of mistakes being caught. Valuing soft-
ware in its own right, and giving credit to those
who produce it, is an excellent way of motivat-
ing this shift in practice.

3 When is software an out-
put?

Software plays different roles in the research
process. It can be a tool for supporting the
work—software as infrastructure—or embody
the research itself—for example, in a scientific
simulation. The role of the same piece of soft-
ware can vary according to the context. To
a computer scientist in the field of workflow
management, the workflow software would be
considered a direct output, as it is the mani-
festation of the research. To a biologist, this
same software would be considered a tool: use-
ful for analyzing results, but not itself an out-
put of the research. For a bioinformatician,
both using and developing the tool, the answer
is somewhere in the middle: whilst the core re-
search may be in the life science domain, the
modifications made to the tool as a result of
this work could also be considered an output,
advancing workflow management [12].

Drawing a hard line between these categories
is difficult. Another way of considering soft-
ware within the research process is from the
angle of reproducibility and reusability. If any
bespoke software is developed as part of the
research, even if it is just an analysis script,
then making it available is an important part
of the reproducibility pipeline. This is only

part of the challenge however; to maintain the
integrity of the software as a part of the re-
search process, it is important not just to be
able to access it, but also to be able to refer to
it accurately.

4 Citing software

Many venues now mandate that data, and in-
creasingly analysis software, be archived and
made available alongside a paper [13], in a wel-
come step towards improving the reproducibil-
ity of research. This works well when the
software is a straightforward analysis script,
but the process of archiving quickly becomes
complex with anything beyond this. A pre-
served ‘snapshot’ of the environment in which
a discovery was made is crucial to fully un-
derstanding the provenance and reliability of
the data, and the potential permanence of soft-
ware promises to greatly increase the rigour of
the scientific process. Most publication venues
lack guidelines that encourage citing software
directly, however, and doing so is not general
practice. A common workaround is to cite a
related paper instead. This might be a pa-
per describing a larger study, where the soft-
ware was integral to that research and is de-
scribed in the methods section, or it might be
a “software paper”: a paper that exists solely
to describe the software, in a venue such as
SoftwareX, the Journal of Open Research Soft-
ware (JORS), the Journal of Open Source Soft-
ware (JOSS) or F1000 Research. In either case
the software referred to in those papers will
be out of date very quickly. Software does
not stay still—bugs are fixed, new function-
ality is added and optimizations are made—
and development is rarely paused for lengthy
journal submission processes to complete. The
specific release of software must be preserved
(archived) and then cited directly, in each pub-
lication in which it is used, to be sure that the

3



correct version is referenced each time, and can
be used for reproducibility. Providing informa-
tion that will help people find the latest version
of the software in a repository is also helpful,
as this may be the one most useful to some-
one who wishes to use or develop the software
further [14].

Precisely how to cite archived software re-
mains an open question [15], but an obvious
mechanism for doing this is to use a Digital Ob-
ject Identifier (DOI) for the particular version
of the software, and include this in the refer-
ence list in the paper. As software and papers
have a symbiotic relationship, it would be ideal
to link back to the paper from the software.
The publication workflow makes this difficult,
however, as the paper will be published after
the software, and at that point it is not possi-
ble to alter the software object and maintain
the integrity of the DOI. Indeed, the nature of
the DOI allocation process means that it is im-
possible for two objects to reference each other
without careful planning and DOI reservation.
This demonstrates the necessity for software to
be considered an object in its own right, stand-
ing alone and independently of any paper.

5 Peer review of software

If software is to be considered an output of
scholarly research it is important to ensure, as
with text-based publications, it is valid and re-
liable. Peer review is currently the accepted
method for determining the validity (and to
some extent, value) of research outputs, and
the format for the review of text publications
is well-established. ‘Software-paper’ venues
have a review process for software, but the
methodology currently followed often focuses
primarily on checking that the software meets
technical requirements (for example, that it is
open source and has installation instructions),
rather than fully evaluating its scientific con-

tribution. Clear documentation, strategies for
quality assurance, such as unit tests, and fol-
lowing relevant coding standards are indica-
tors of rigour, but should be treated as proxies,
rather than guarantees of this.

Code review—checking that the way in
which software is written meets certain qual-
ity standards—is widely used in industry to
check for defects, and ensure that software
is efficient and usable by others. This pro-
cess, analogous to checking that a paper is free
from language errors, and that the narrative
is unambiguous, has an important role in as-
sessing research software, where accuracy is of
paramount importance. Code review is an ex-
tremely time consuming process, however, par-
ticularly where the reviewer is unfamiliar with
the software, and as such realising this will be
a challenge. Determining the scholarly ‘contri-
bution’ of software as a research output (which
remains a contentious issue for traditional pub-
lications) may be less important if we take the
view that its value can be judged by the papers
in which it is cited, or the number of people
who go on to use or extend it.

6 Conclusion

Software is now integral to scholarly research,
and it is thus essential that it is open, acces-
sible, and valued by the research community.
The present publication model falls short of
guaranteeing any of these things, but a shift is
gradually occurring. Peer review of software is
likely to remain a challenge, and may require a
different approach from that used for papers.
Official recognition of software as a research
output will ultimately be transformative, im-
proving the quality, reproducibility and scala-
bility of our knowledge production, as well as
recognising the often hidden role of the increas-
ing number of scholarly researchers who spend
most of their time writing code.

4



References

[1] S. Hettrick, “2014 software in research
survey,” Feb. 2018.

[2] H. Thimbleby, “Explaining code for pub-
lication,” Software: Practice and Experi-
ence, vol. 33, no. 10, pp. 975–1001, 2003.

[3] C. Jay, R. Haines, D. S. Katz, J. C.
Carver, S. Gesing, S. R. Brandt, J. How-
ison, A. Dubey, J. C. Phillips, H. Wan,
and M. J. Turk, “The challenges of theory-
software translation [version 1; peer re-
view: 1 approved, 1 approved with reser-
vations],” F1000Research, vol. 9, no. 1192,
p. 1192, 2020.

[4] A.-L. Lamprecht, L. Garcia, M. Kuzak,
C. Martinez, R. Arcila, E. M. D. Pico,
V. D. D. Angel, S. van de Sandt,
J. Ison, P. A. Martinez, P. McQuilton,
A. Valencia, J. Harrow, F. Psomopou-
los, J. L. Gelpi, N. C. Hong, C. Goble,
and S. Capella-Gutierrez, “Towards FAIR
principles for research software,” Data
Science, vol. 3, no. 1, pp. 37–59, Jun.
2020.

[5] Directorate-General for Research and In-
novation (European Commission), Turn-
ing FAIR into reality: Final Report and
Action Plan from the European Commis-
sion Expert Group on FAIR Data, 2018.
[Online]. Available: https://ec.europa.eu/
info/publications/turning-fair-reality en

[6] “FAIR for Research Software (FAIR4RS)
Working Group.” [Online]. Available:
https://www.rd-alliance.org/groups/
fair-4-research-software-fair4rs-wg

[7] R. D. Peng, “Reproducible research in
computational science,” Science, vol. 334,
no. 6060, pp. 1226–1227, 2011.

[8] M. R. de Souza, R. Haines, and C. Jay,
“Defining sustainability through develop-
ers’ eyes: Recommendations from an in-
terview study,” in 2nd Workshop on Sus-
tainable Software for Science: Practice
and Experiences (WSSSPE2), 2014.

[9] M. R. de Souza, R. Haines, M. Vigo, and
C. Jay, “What makes research software
sustainable? An interview study with
research software engineers,” in 2019
IEEE/ACM 12th International Workshop
on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE,
2019, pp. 135–138. [Online]. Available:
https://arxiv.org/pdf/1903.06039.pdf

[10] C. Jay, R. Sanyour, and R. Haines,
““Not everyone can use Git”: Research
Software Engineers’ recommendations for
scientist-centred software support (and
what researchers really think of them),”
Journal of Open Research Software
(accepted), 2016. [Online]. Available:
https://www.research.manchester.ac.uk/
portal/files/53599032/JayCaroline 2.pdf

[11] C. Auckland and S. Bunn, “In-
tegrity in research,” POSTNote
number 544, 2017. [Online]. Available:
http://researchbriefings.files.parliament.
uk/documents/POST-PN-0544/
POST-PN-0544.pdf

[12] C. Jay and R. Haines, “Software as Aca-
demic Output,” in Engineering Academic
Software, C. Goble, J. Howison, C. Kirch-
ner, O. Nierstrasz, and J. J. Vinju, Eds.
Dagstuhl Publishing, 2016.

[13] D. S. Katz, N. P. Chue Hong, T. Clark,
A. Muench, S. Stall, D. Bouquin, M. Can-
non, S. Edmunds, T. Faez, P. Feeney,
M. Fenner, M. Friedman, G. Gre-
nier, M. Harrison, J. Heber, A. Leary,
C. MacCallum, H. Murray, E. Pastrana,

5

https://ec.europa.eu/info/publications/turning-fair-reality_en
https://ec.europa.eu/info/publications/turning-fair-reality_en
https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg
https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg
https://arxiv.org/pdf/1903.06039.pdf
https://www.research.manchester.ac.uk/portal/files/53599032/JayCaroline_2.pdf
https://www.research.manchester.ac.uk/portal/files/53599032/JayCaroline_2.pdf
http://researchbriefings.files.parliament.uk/documents/POST-PN-0544/POST-PN-0544.pdf
http://researchbriefings.files.parliament.uk/documents/POST-PN-0544/POST-PN-0544.pdf
http://researchbriefings.files.parliament.uk/documents/POST-PN-0544/POST-PN-0544.pdf


K. Perry, D. Schuster, M. Stockhause, and
J. Yeston, “The importance of software ci-
tation [version 1; peer review: awaiting
peer review],” F1000Research, vol. 9, no.
1257, 2020.

[14] D. S. Katz, “Software and repos-
itories in the context of FAIR,”
2020. [Online]. Available: https:
//danielskatzblog.wordpress.com/2020/
10/20/fair-software-and-repositories/

[15] A. M. Smith, D. S. Katz, K. E. Niemeyer,
and FORCE11 Software Citation Work-
ing Group, “Software citation principles,”
PeerJ Computer Science, vol. 2, p. e86,
Sep. 2016.

6

https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/
https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/
https://danielskatzblog.wordpress.com/2020/10/20/fair-software-and-repositories/

	1 Introduction
	2 The role of software in scholarly research
	3 When is software an output?
	4 Citing software
	5 Peer review of software
	6 Conclusion

