
 

Theory-Software Translation: 
Research Challenges and Future 
Directions 
Caroline Jay, Robert Haines, Daniel S. Katz, Jeffrey Carver, James C. Phillips, Anshu 
Dubey, Sandra Gesing, Matthew Turk, Hui Wan, Hubertus van Dam, James Howison, Vitali 
Morozov, Steven R. Brandt 
 
Abstract 
The Theory-Software Translation Workshop, held in New Orleans in February 2019, 
explored in depth the process of both instantiating theory in software – for example, 
implementing a mathematical model in code as part of a simulation – and using the outputs 
of software – such as the behavior of a simulation – to advance knowledge. As computation 
within research is now ubiquitous, the workshop provided a timely opportunity to reflect on 
the particular challenges of research software engineering – the process of developing and 
maintaining software for scientific discovery. In addition to the general challenges common 
to all software development projects, research software additionally must represent, 
manipulate, and provide data for complex theoretical constructs. Ensuring this process is 
robust is essential to maintaining the integrity of the science resulting from it, and the 
workshop highlighted a number of areas where the current approach to research software 
engineering would benefit from an evidence base that could be used to inform best practice. 
 
The workshop brought together expert research software engineers and academics to 
discuss the challenges of Theory-Software Translation over a two-day period. This report 
provides an overview of the workshop activities, and a synthesises of the discussion that 
was recorded. The body of the report presents a thematic analysis of the challenges of 
Theory-Software Translation as identified by workshop participants, summarises these into a 
set of research areas, and provides recommendations for the future direction of this work. 

  

1 



 

Table of Contents 
1. Introduction 3 

1.a. Participants 3 
1.b. Workshop format 4 

2. Outputs of discussions 4 
2.a. Design 5 

Should software be readable from theory? 5 
Can/should we separate concerns? 5 
How can we better link domain science and computer science? 6 
What is the influence of software in driving experimentation? 6 
How can we evaluate the design process? 6 

2.b. Infrastructure 7 
How should we verify results arrived at through computation? 7 
Is sustainability and portability important? 7 
What are the constraints posed by platforms and architectures? 8 
Measuring theory-software translation 8 

2.c. Culture 8 
How can we foster a culture of collaboration? 8 
What are the external expectations of the reliability of the software? 9 
How does the research environment affect the translation process? 10 
What is the best way to embed software engineering skills in science? 10 
How do we ensure usability? 11 

3. Theory-software translation as a new stream of research 11 

4. Next steps 12 

Acknowledgements 13 
  

2 



 

1. Introduction 
 
In 2017, the Software Sustainability Institute-funded Code/Theory Workshop  took place in 1

the UK. The aim of the workshop was to explore the challenges involved in writing software 
for research. The topics emerging from the discussion were broad, ranging from technical 
issues to organisational culture. 
 
The results of this workshop made it clear that an exploration of the unique technical 
challenges of research software engineering was required. The Theory-Software Translation 
Workshop, held in New Orleans in February 2019, examined this issue with a particular 
focus on High Performance Computing (HPC). The term ‘Theory-Software Translation’ was 
used to cover in broad terms the processes involved in implementing, and understanding the 
results of computation within research. As an example of the challenges involved, consider 
interpreting the results of a simulation: it is necessary to distinguish between underpinning 
theory (knowledge), mathematical model and numerics (applied mathematics) and 
implementation (code). Moving between these representations requires abstraction, and 
therefore entails loss and compromise. Assumptions made when translating a model to 
numerics and then to code may have a profound effect on the simulation behaviour, but may 
be poorly understood by a domain scientist using the results, due to a lack of expertise, and 
the complexity of the underlying codebase. 
 
The workshop explored Theory-Software Translation in general terms, but with a particular 
focus on understanding how empirical research could contribute to improving it. Computation 
is now ubiquitous in science, but its implementation has evolved largely in an ad hoc and 
incremental fashion. By examining the process critically and in detail, the workshop aimed to 
determine the perceived threats to scientific validity posed by current practices, and also to 
identify the evidence and/or activities that could lead to a step-change in the validity and 
robustness of the knowledge produced via computational science. 

1.a. Participants 
The following experts within the fields of research software engineering, and the academic 
study thereof, attended the workshop by invitation: 
 
Roscoe A. Bartlett, Sandia National Laboratories, USA 
Steven R. Brandt, Louisiana State University, USA 
Jeffrey C. Carver, University of Alabama, USA 
Thomas Cheatham, III, University of Utah, USA 

1 Jay C, Haines R, Vigo M, Matentzoglu N, Stevens R, Boyle J, Davies A, Del Vescovo C, 
Gruel N, Le Blanc A, Mawdsley D, Mellor D, Mikroyannidi E, Rollins R, Rowley A, Vega J 
(2017) Identifying the challenges of code/theory translation: report from the Code/Theory 
2017 workshop. Research Ideas and Outcomes 3: e13236. 
https://doi.org/10.3897/rio.3.e13236 

3 

https://se4science.org/workshops/tst-us
https://se4science.org/workshops/tst-us
https://doi.org/10.3897/rio.3.e13236


 

Anshu Dubey, Argonne National Laboratory, USA 
Sandra Gesing, University of Notre Dame, USA 
Rinku Gupta, Argonne National Laboratory, USA 
Robert Haines, University of Manchester, UK 
James Howison, University of Texas at Austin, USA 
Caroline Jay, University of Manchester, UK 
Hans Johansen, Lawrence Berkeley National Laboratory, USA 
Daniel S. Katz, University of Illinois at Urbana-Champaign, USA 
Dmitry Liakh, Oak Ridge National Laboratory, USA 
Vitali Morozov, Argonne National Laboratory, USA 
Brian O’Shea, Michigan State University, USA 
James C. Phillips, University of Illinois, USA 
Katherine Riley, Argonne National Laboratory, USA 
Matthew Turk, University of Illinois at Urbana-Champaign, USA 
Hubertus van Dam, Brookhaven National Laboratory, USA 
Hui Wan, Pacific Northwest National Laboratory, USA 

1.b. Workshop format 
The workshop started with an introduction to the topic from the organisers, followed by a 
short talk on the ‘Four Facings’ from Tom Cheatham, which examined the different 
perspectives that should be considered when evaluating research software. Participants 
then gave lightning talks explaining their background and interest in the topic. Slides for the 
lightning talks (for those speakers who used slides) are available at: 
https://se4science.org/workshops/tst-us/talks/.  
 
The main part of the workshop consisted of a series of breakouts. The first, where 
participants were pre-allocated to groups to ensure each group had people with a mix of 
backgrounds, focused on defining the overall challenges of theory-software translation. 
Following a feedback session, and noting the themes that were starting to emerge, the 
organisers divided the next set of breakouts into groups considering training and culture, 
software design, software stack and tools and miscellaneous (to catch any issues falling 
outside the first three). Participants self-selected to join one of these groups for one session, 
and then moved to a different group for the next session. In each case, participants were 
asked to discuss the topic, list challenges, identify current successes, and indicate how we 
could make progress. 
 
A final plenary session considered the prospects for Theory-Software Translation as a 
research area, and considered next steps. The full workshop agenda is available at: 
https://se4science.org/workshops/tst-us/agenda. 

2. Outputs of discussions 
During the breakout sessions, groups were asked to keep a record of their conversation, 
transcribing  as much of the discussion as possible, and then summarising key points at the 

4 

https://se4science.org/workshops/tst-us/talks/
https://se4science.org/workshops/tst-us/agenda


 

top of the document. There were three breakout sessions, each with four groups, resulting in 
12 discussion documents. As common topics arose across groups and sessions, the 
breakout notes were treated as a single corpus during analysis. Two of the authors (Jay and 
Haines) performed a thematic analysis, with Jay categorising the full set of discussion notes 
into the first set of themes, Haines reviewing these and cross-checking with the discussion 
notes, and both iteratively refining the final set. 
 
Three overarching themes — Design, Infrastructure and Culture — emerged during the 
analysis. We discuss these in more detail below, providing a comprehensive summary of the 
discussion, and describing the key areas of research identified within each. Many of the 
research challenges are phrased as open questions. 

2.a. Design 
Participants considered Design in terms of software design, research design, and the way in 
which the two interact. 

Should software be readable from theory? 
There was considerable discussion about the extent to which it is possible to translate theory 
to software whilst maintaining the essence, understanding, and readability of the underlying 
theory. Software is highly complex, and can unintentionally obfuscate the theory it contains, 
particularly when it is optimized for good performance. This led to a number of questions: Is 
there a particular design process that should be used for embedding theory within software 
such that it is readable? To what extent is it necessary for someone reading the software to 
understand the underpinning theory? When software is composed of many components 
having their own theoretical underpinnings, what does it mean for the overall theory 
underlying the whole? Is it possible to measure how well software represents theory? Ought 
theory be recoverable/reconstructable from software? How could ‘theory recoverability’ be 
measured? 

Can/should we separate concerns? 
In an era of growing complexity in models and questions, translating mathematical theories 
to software in a reliable way is becoming increasingly difficult. One perspective on the 
process is that of moving from ‘science’ to ‘equations to be solved’ to ‘computational 
algorithms/numerical analysis’ to ‘computer science/software engineering’. (See Babuska 
and Oden  for a formal description of this process and these domains.) Each of these is a 2

discipline in its own right, and each is complex. There was a view that it is not realistic for 
every scientist to understand all of these, and thus an informed ‘separation of concerns’ is 
crucial. Without this, the resultant software generally does not adequately separate the 
scientific questions asked, the equations to be solved, the numerical methods used to solve 
these equations, and the software infrastructure supporting these methods. 
 

2 Ivo Babuska, J. Tinsley Oden, “Verification and validation in computational engineering and 
science: basic concepts” Comput. Methods Appl. Mech. Engrg. 19:3(2004) 4057-4066 

5 



 

An alternative view was that concerns cannot always be separated within computational 
research, from both a theoretical and a practical perspective. At present, a paper and a code 
are separate things, but the boundaries are blurring. Jupyter notebooks are an example of 
documentation executed with code, but this approach is unlikely to be sufficient or scalable 
on its own. If the boundaries between paper and code increasingly overlap, then it becomes 
difficult to see where the theory ends and the software begins. Simply marking up theory in 
code by adding documentation increases the maintenance cost of the code and risks the two 
becoming out of sync. A code marked up with the wrong theory is worse than useless, even 
dangerous, so any such system would need to be able to verify that the code and theory 
were consistent. 

How can we better link domain science and computer science? 
There appears to be a disconnect between computer science research and its deployment in 
scientific discovery; improving the linkage could lead to better science. There are many 
areas that require computer science research: new languages; more flexible operators; code 
generation; code transformation; test generation. Theory-Software Translation was 
recognised as having the potential to expose and contribute to these challenges. 

What is the influence of software in driving experimentation? 
A researcher can use an application to verify a hypothesis through software as a first step, 
and then go back and modify the theory – and the software – to do more discovery and push 
the boundaries of the theory. 

 
There is the potential for a broader impact of application of the theory (or theory component) 
into other domains, once the capability is developed for a common subtype of problem. An 
example of theory emerging from software is the equation of state “discovery” from 
brute-force simulations. How should it be merged back into theory? 
 
In the future, code generators may offer a route to translating the theory to software. This 
approach could do a better job of preserving information during implementation and lead to a 
higher order transformation, due to higher order input. It may allow for timely cross-code 
validation, where different theory comparisons are made, as it is less 
human-resource-intensive. This may also be a way to reduce human error (for example, 
there are chemistry codes that do code generation where it would otherwise be error prone 
or repetitive), although it should be noted that code generators, being software themselves, 
may also introduce bugs. Recording the provenance of the code is important in 
understanding how theory is ultimately arrived at through software outputs. Does using a 
code generator obfuscate that provenance, or make it clearer? 

How can we evaluate the design process? 
When trying to understand the results of a simulation, it is necessary to distinguish between 
theory, model, numerics (applied mathematics) and implementation (code). Forming 
problems at a higher level declaratively could help with this, and disciplines that make theory 
to software translation more reliable might be able to articulate a higher level of confidence 

6 



 

in a simulation by focusing on testing simulations and model intercomparison. But model 
intercomparison is challenging, and it can be difficult to identify the reasons for and sources 
of similarities and differences in model outputs. 
 
Understanding how to make comparisons between models would benefit from an empirical 
approach. This raises a number of additional questions: In order to be able to compare 
models, do we need a process for working out the resolution, or complexity, of the model? 
How can we avoid being too simplistic, whilst being mindful of resources? How can we avoid 
overfitting? Could we verify models by varying the resolution and seeing whether we get the 
same results? How do we deal with differences between models and real world data? 
 
If we can gain an understanding of how models and codes can be compared, this may open 
up further opportunities for adaptation and reuse. Could we adapt existing codes to new 
paradigms? Domain Specific Languages (DSLs) are generally community specific at 
present. Could we make progress through merging or integrating them, at least where we 
can be reasonably certain that the models that they are representing are comparable? There 
is an explosion of tools and services across all domains. How can we tell if they are reliable? 
Would being able to compare them across domains help with verification and validation of 
these tools? 
 
Should there be more emphasis on a clean, extensible software design from the beginning, 
with more extensive use of design formalization tools, like UML? Software can be used for 
exploration - what is the engineering process for this? 
 
Sometimes, even when tools (e.g., machine learning frameworks, libraries) are available, the 
work needed to use them (transform inputs as needed, transform outputs as wanted) is too 
demanding. What are the design decisions that have led to this case of affairs? 

2.b. Infrastructure 
Theory-software translation is not solely about mapping scientific constructs to algorithms, 
but routed in and affected by a wider software and hardware infrastructure. This part of the 
discussion gave consideration to verification and validation, sustainability and portability, and 
how theory-software translation might be measured. 

How should we verify results arrived at through computation? 
There is currently no established, efficient means of achieving the verification of a software 
simulation, and as such this is an area that requires further attention. Where there is 
unexpected behavior in a simulation, software and data provenance are both crucial to 
knowing whether it is caused by a bug or a discovery. Where there is a defect, how can we 
tell where it lies? Is it in the theory, or the mathematics, or the code? Knowledge is required, 
not just of the code and the theory, but of the full software stack, for example the sequence 
of dependencies, and how the code compiles or is interpreted. 
 

7 



 

The number of potential inputs to most codes is much larger than can be tested in their 
entirety. A potential solution might be to express theory as a set of tests for code to pass. 
This led to the question of whether it would be possible to automate test generation from 
theory specification. 

Is sustainability and portability important? 
The importance of reproducibility within research is becoming increasingly recognised. The 
extent to which true reproducibility is possible in computational science is not clear, due to 
portability problems, continually changing technology and software decay. Nevertheless, it 
was seen as important to strive to get as close as possible to this ideal, and also to work out 
practical ways of achieving something that approximates this. Having different teams trying 
to reproduce results, through multiple people running the same codes, could be useful in 
terms of verification and building knowledge. 
 
Whilst sustaining software for reproducibility is difficult, paradoxically, software almost 
always lives longer than planned, as (for example) adding features to a prototype is quicker 
and cheaper than engineering a new and robust code from scratch. What are the 
implications of this for theory-software translation? What are the effects on the software’s 
integrity, the way new theory must subsequently be implemented, and the results it 
produces? What are the issues caused by technical debt? 
 
To address sustainability, one approach would be to develop ways to represent models and 
translate from code back into theory in a way that will survive over time. 

What are the constraints posed by platforms and architectures? 
Scientific software is generally going to be utilized on multiple generations of computational 
architectures, and the original developers of the software typically do not (and cannot) take 
this into account. Changing hardware, as well as over-engineered codes, build systems, and 
supporting infrastructure impedes both portability and reproducibility and the ability to update 
or the theory it contains. Where concepts or operations do not currently translate to 
hardware, the view was that we should ideally aim to change the hardware, rather than 
restrict the theory. We should also remain mindful of that hardware, as well as software, can 
be an error source, as code that functions correctly on one platform may not on another, 
unbeknownst to the programmer. 

Measuring theory-software translation 
Whilst theory is exact, code has tolerances and estimations. Recognising this was seen as 
an important part of understanding and improving theory-software translation. One 
suggestion was to frame this in terms of implementation decisions introducing uncertainty, 
and measuring how likely an output was to be correct. Rather than assuming, ‘this output is 
correct,’ would it be better to state, ‘there is x% chance some error has been introduced 
along the way, according to the architecture/code size etc., and therefore we should interpret 
the result accordingly.’? Another way of considering this is from the perspective of 

8 



 

verification. For example, could we develop diagnostics that verify the health of the 
simulation? 
 
There is also loss when moving between representations in different domains (theory, 
equations, algorithms, software.) How can we measure this, and understand its effects?  

2.c. Culture 
The environment in which Theory-Software Translation takes place was recognised as a key 
influence on the process. Discussion relating to this topic covered training, collaboration, and 
a recognition of different backgrounds and skill sets.  

How can we foster a culture of collaboration? 
Computational science, particularly that conducted in large projects, is necessarily 
interdisciplinary. The heavily domain-contextual specification of the problem and the deep 
technical knowledge required to implement solutions can lead to an initial communication 
barrier between domain scientists and computer scientists. Embedding software engineers 
in research teams is a good way of facilitating communication, and there was discussion 
about what more could be done.  
 
One question was whether explicitly recognising the idea that software is a translation of 
theory might change the communication process. Could conversations across different roles 
be improved using this approach? 
 
Implementing theory in code was viewed as different from implementing non-research 
software, especially where the requirements are concerned. A key issue was that it may not 
be possible to separate specification from design, a situation analogous to building an 
aircraft in flight. Given this, there is a lack of clarity about the best way to approach 
requirements engineering within research projects. 
 
Crucially, it was viewed as important to emphasise that software engineering is a core 
intellectual contribution to the research, not just a service. Close interaction between an 
application scientist and an applied mathematician can be helpful in designing the 
appropriate mathematical/numerical method. This interaction was thought to illustrate the 
tension between the ‘separation of concerns’ that should be true within the software, but is 
not necessary between people. Separating concerns too strictly may lead to different people 
concentrating on their own tasks, with their own goals and motivations, neglecting the overall 
picture. On the other hand, focusing on a particular aspect can provide better abstractions 
and more performant solutions. How do we balance these two pressures? 
 
There needs to be an improved understanding of which parts of a software tool can be 
treated as a black box and taken on faith, and which cannot. Without this understanding, 
software may be used in ways it is not designed for and so give spurious results. Software 
can be flexible, and because of this, be used in domains for which it was not originally 

9 



 

intended; in this case, it should be validated within this new domain before any results are 
published. 

What are the external expectations of the reliability of the software? 
Validation, which was discussed extensively from a technical perspective, was also 
considered from an administrative/organisational perspective. Software may need to be 
considered as a scientific instrument that needs to be validated and/or calibrated. A current 
example of this is that in the UK, any software that collects patient symptom data, that can 
be used to access medical advice, or that can be used to assist with a diagnosis, must be 
developed as a "medical device" . Might there be a requirement to think of software as an 3

instrument that meets formal standards in other research settings? Would this make results 
more reliable, or would it stifle creativity? Can we expect complete ‘accuracy’? If not, should 
there be ‘guards’ or ‘contracts’ to detail this? 

How does the research environment affect the translation process? 
There is a perception that academic researchers are under pressure to publish at all costs, 
diminishing the attention paid to good software engineering practices when they are 
perceived as slowing the research and publication process. Valuing software as a 
deliverable in addition to publications was viewed as an important part of improving its 
quality and availability. Citing software (via, e.g., the Journal of Open Source Software  or by 4

more direct citations to the software ) is another part of this process. Considering software 5

explicitly as an output of research is still relatively unusual, and there is still work to be done 
in understanding how to achieve this.  
 
There was a view that funding bodies should be involved in discussions regarding 
theory-software translation. Many of the costs of development, maintenance, and evolution 
are hidden; they need to be articulated, and be part of an open, ongoing conversation. The 
cost of development is underestimated higher in the chain. A lot of time is spent porting 
software to new hardware, but it is difficult to obtain funding for this, with a negative impact 
on the quality of the resultant software. 

What is the best way to embed software engineering skills in science? 
Often the people writing scientific code are graduate students or researchers who do not 
have a background in software engineering. Data Carpentry/Software Carpentry was viewed 
as a good start, but not sufficient. Instilling the necessity of thinking about theory-software 
translation in graduate students right from the start would help to avoid the need to 
continually apply patches on top of poorly-written and poorly-designed code. While this lack 
of training is a specific problem; software development training is a general challenge, 

3 Medical device stand-alone software including apps: 
https://www.gov.uk/government/publications/medical-devices-software-applications-apps 
4 The Journal of Open Source Software: https://joss.theoj.org/ 
5 Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working Group. 2016. Software 
citation principles. PeerJ Computer Science 2:e86 https://doi.org/10.7717/peerj-cs.86 

10 

https://www.gov.uk/government/publications/medical-devices-software-applications-apps
https://joss.theoj.org/
https://doi.org/10.7717/peerj-cs.86


 

because academic supervisors do not necessarily see the value of it, or even know about it 
themselves. Knowledge of training, and belief in the necessity of the training, is critical.  
 
Training in communication is seen as essential, and it should go both ways. All members of 
a science team need to be proficient in cross-disciplinary communication. Being able to 
communicate scientific requirements to software developers is essential. Being a careful and 
skeptical user of simulation outputs is also essential, and this requires an understanding of 
the workings and limitations of the software method, such that simulation outputs are viewed 
through the appropriate lens. 
 
There is potential for training to be conceptualised as a hierarchy: an awareness of 
theory-software translation at the basic level (abstract/strategy level); some general sense of 
how theory is translated into software and the process at a higher level (an understanding of 
process); and in-depth expertise in the implementation of theory-software translation at the 
developer level (with possible specialization). 

How do we ensure usability? 
Preserving a balance between usability and performance can be difficult. Optimized code is 
often less readable, and so is harder to understand. This in turn further obfuscates the 
theory that the code represents and so impacts reproducibility and productivity as well. In an 
ideal project, mathematical concepts are expressed clearly in software components, offering 
reuse, support for testing, and a clear map to and from the underlying theory. Modular 
representation of theory is likely to be more readable and testable, but it would be interesting 
to investigate whether there are areas where this approach is not suitable.  Is there value in 
an unoptimised, understandable version of a simulation, for example, being used as a 
reference implementation? 

3. Theory-software translation as a new stream of 
research 
The material gathered from the workshop revealed a number of areas where research could 
significantly advance both knowledge and scientific practice.  
 
Theory-Software Translation research can contribute to the evidence-base for research 
software infrastructure strategy and practice at a local (individual/group), institutional 
(organization), national, and international level. It can also identify crosscutting challenges 
for computational research, and advance the techniques we use to perform such research. A 
better understanding of this process, and the ways in which errors can propagate through 
the various translations required, will lead to more robust and accurate research software. 
 
Research software is not merely used to perform a task, but to understand a problem and 
advance knowledge. While current software engineering research outputs and methods are 
relevant to addressing these challenges, theory-software translation requires us to tackle 
new problems that are rooted within the scientific domain: 
 

11 



 

● The translation process moves from theory to algorithm to software (and vice-versa). 
Information is lost in moving from one domain to another, as the way in which ideas 
are represented changes. Can we quantify/explain this loss/difference, and articulate 
the tradeoffs resulting from translation? 

● How does incorporating theory in software (e.g., a simulation) differ from standard 
requirements engineering? The development of software and theory happen 
together. While requirements changes are generally constrained for typical software, 
theory can change much more dramatically, resulting in not just an addition, but a 
fundamental change in what the software should do. 

● How do we understand the results of a simulation, and translate this back to the 
theory underlying the simulation? How can we articulate confidence in it? Can we 
develop diagnostics that verify the health of the simulation? How should real world 
data be used in the verification process? 

● How do we go from viable theory to validated, verified code in a time-efficient way? 
Can theory be expressed as a set of tests? 

● There is a distinction between theory, model, numerics and code, and there are 
difficulties mapping between them. There can be errors in any, all, or the mapping 
process that may affect the resulting science. How can we detect and handle these 
errors? 

● Is a true separation of concerns (theory, and its implementation in software) 
possible? What are the implications for how we write scientific software? 

● Can we measure how well software represents theory? Should theory be recoverable 
from software (where software includes documentation)? Can theory today be 
represented solely in papers, or is it really also in the code? How can we help people 
to read and understand it? 

● Are there languages or language features that make theory-software translation 
better/easier? 

● The increase in model complexity and sophistication of questions that models are 
designed to answer makes translating them into software increasingly difficult. How 
do we determine the appropriate level of complexity? Is it possible to optimise for 
complexity reduction, as well as performance? 

● How can we define functional reproducibility? Long-term reproducibility is likely to 
remain out of reach due to software collapse . What should the process be? What is 6

the role of testing? Is there a way of providing a reference implementation that can 
be used as a blueprint for the theory? 

● Can we create ways of representing theory that will persist and remain usable, so as 
to increase software sustainability and prolong the period of reproducibility?  

● Can we identify the range of practices currently used, and gather empirical data 
concerning their efficacy, to result in evidence-based best practice? 

● How should we approach the design of code generators and DSLs? 
● How should theory be communicated to developers? E.g, using an ontology, or 

formal methods? 
● Software is unlikely to ever be 100% ‘correct’. Can we develop ways to quantify 

uncertainty for software functioning such that appropriate probabilities can be applied 
to results? 

● Can we extract theory from existing codes which may or may not be in use? How do 
we expose theory within complex, iteratively developed computational methods, such 
that scientists can understand its functioning? 

6 K. Hinsen, "Dealing With Software Collapse" in Computing in Science & Engineering, vol. 21, no. 03, 
pp. 104-108, 2019. doi: 10.1109/MCSE.2019.2900945 

12 



 

● If we consider the route from scientific experimental design to software and 
observational data, and then back to theory, can we understand where errors or 
discrepancies are most likely to occur? What form do these errors take at each stage 
of translation? 

● What is the impact of making theory compromises and simplifying assumptions for 
the purpose of computability? Does how theory is discretized have an impact? 

● What are the long term benefits of doing theory-software translation better? Can we 
increase scientific impact, productivity, software quality, software adoption, reuse? 

4. Next steps 
The reports from this workshop and the Code/Theory 2017 workshop identified a series of 
challenges in building and using scientific software. To address them, we need empirical 
research. We propose the following actions to help move towards this goal.  
 

1. Expand the community interested in this topic. The US and UK are supporting 
nascent research communities in this area via URSSI and the SSI, and we believe 
that this growing interest and the importance of these challenges are sufficient to 
demonstrate the need to support high-quality research with the potential for real 
impact on computational science. An important aspect of this is the interdisciplinary 
nature of the research: tackling the challenges identified here will require a diverse 
range of skills. 

 
2. Develop an agenda for research. Summarising the research challenges in a short 

publication (based on this report) will help with dissemination to a wider community, 
and catalyse further conversation about the best way forward. 

 
3. Engage with funders. Theory-Software Translation can be perceived as 

‘meta-research’, and therefore sits outside of traditional funding routes. It is important 
to make the case to funders that formally understanding the nature of computation 
within research 1) contains unique challenges (i.e., they are not covered by current 
software engineering research) and 2) has the potential to transform the scientific 
process. 

Acknowledgements 
We thank NSF for support of this work under award 1551592. 
 

13 


