
Sustaining Research Software: an SC18 Panel

Daniel S. Katz1, Patrick Aerts2, Neil P. Chue Hong3, Anshu Dubey4, Sandra Gesing5, Henry J.
Neeman6, David E. Pearah7

1 NCSA & CS & ECE & iSchool, University of Illinois Urbana-Champaign, d.katz@ieee.org

2 Netherlands eScience Center and Data Archiving and Networked Services,
p.aerts@esciencecenter.nl

3 Software Sustainability Institute, EPCC, University of Edinburgh, N.ChueHong@software.ac.uk
4Argonne National Laboratory and University of Chicago, adubey@anl.gov

5 Center for Research Computing, University of Notre Dame, sand
ra.gesing@nd.edu

6 University of Oklahoma, hneeman@ou.edu

7 The HDF Group, david.pearah@hdfgroup.org

Introduction

Many science advances have been possible thanks to the use of research software,
which has become essential to advancing virtually every Science, Technology,
Engineering and Mathematics (STEM) discipline and many non-STEM disciplines
including social sciences and humanities. And while much of it is made available under
open source licenses, work is needed to develop, support, and sustain it, as underlying
systems and software as well as user needs evolve.

In addition, the changing landscape of high performance computing (HPC) platforms, where
performance and scaling advances are ever more reliant on software and algorithm
improvements as we hit hardware scaling barriers is causing renewed tension between
sustainability of software and its performance. We must do more to highlight the trade-off
between performance and sustainability, and to emphasize the need for sustainability given the
fact that complex software stacks don’t survive without frequent maintenance; made more
difficult as a generation of developers of established and heavily-used research software retire.
Several HPC forums are doing this, and it has become an active area of funding as well.

In response, the authors organized and ran a panel at the SC18 conference. The
objectives of the panel were to highlight the importance of sustainability, to illuminate the
tension between pure performance and sustainability, and to steer SC community discussion
toward understanding and addressing this issue and this tension. This panel was intended to
have greater audience participation than a typical SC panel. In addition to presentations by the
panelists, and questions from the audience to the panel, we used interactive polling to gather
audience inputs and to guide discussion between the panelists as well as with the audience.

The outcome of the discussions, as presented in this paper, can inform choices of advance
compute and data infrastructures to positively impact future research software and future
research.

mailto:d.katz@ieee.org
mailto:p.aerts@esciencecenter.nl
mailto:N.ChueHong@software.ac.uk
mailto:sandra.gesing@nd.edu
mailto:sandra.gesing@nd.edu
mailto:hneeman@ou.edu
mailto:david.pearah@hdfgroup.org
https://sc18.supercomputing.org/presentation/?id=pan110&sess=sess295
https://sc18.supercomputing.org/

Format
The panel started with a 5 minute introduction from the moderator to define the problem of
software sustainability in a research context. Panelists then provided their insights and/or
relevant experiences in 5 minute talks followed by a quick, moderated, full-group discussion of
the talks. This was followed by online polling through a platform where the results of input were
displayed instantaneously. This strategy was very successful in engaging the audience and the
outcome of the exercise is summarized later in the report.

Panelists
Panelists included globally acknowledged leaders in the field of software sustainability. One of
the panelists leads an institutional HPC center working with consumers of research software,
one leads a center that both builds and uses research software, and the others are key
members of relevant projects, organizations, and efforts at the vanguard of sustainable
software. For example, sustainability is a key challenge in the US Department of Energy’s
(DOE’s) Exascale Computing Project (ECP), with the Interoperable Design of Extreme-scale
Application Software (IDEAS) project and the Better Scientific Software (BSSw) effort as
represented by panelist Dubey seen as a path for progress in this area; in the
Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program in the US National
Science Foundation (NSF), represented by moderator Katz and panelist Gesing who are co-PIs
in the US Research Software Sustainability Institute (URSSI) Conceptualization project; in the
UK, represented by panelist Chue Hong as the director of the national Software Sustainability
Institute (SSI); in the Netherlands, represented by panelist Aerts, combining his work at the
Netherlands eScience Center, where sustainability is a key goal for the software produced by
the center and at DANS, Data Archiving and Networked Services, where the emphasis is also
on sustaining software from the cultural heritage point of view; and in companies such as the
HDF Group, represented by panelist Pearah (CEO, HDF Group), where the company’s future
depends on the sustainability of the software products they build. Anyone who either develops
or uses software should be concerned about its sustainability.

The panelists have taken their previous experience, as software developers, users, integrators
of complex software applications and systems, and service providers, to generalize what they
have learned about sustainability and working with larger communities to collectively understand
the state of the art and make improvements, such as in SSI, URSSI, WSSSPE, IDEAS, BSSw.
In addition to these overall projects, they have also worked together in smaller groups.

Sandra Gesing introduced aspects of software sustainability via a 2017 survey of members of
the National Postdoctoral Association. Results include that 95% of US-based researchers and
90% of UK-based researchers (from a prior, similar survey) answered that they use software for
their research. 63% (US) or 70% (UK) cannot perform their research without software. Given
these numbers and that the people surveyed also often create their own software, it is alarming
that over 50% lack formal or informal training in software engineering. While the UK already
achieved a career path for Research Software Engineers (RSEs) via the initiatives organized by
the UK Software Sustainability Institute (SSI) and the RSE Association, the US still lacks
well-defined career paths.

https://www.exascaleproject.org/
https://ideas-productivity.org/
https://ideas-productivity.org/
https://bssw.io/
https://www.software.ac.uk/
https://www.software.ac.uk/
https://www.esciencecenter.nl/
https://dans.knaw.nl/nl
https://www.hdfgroup.org/
https://www.hdfgroup.org/
https://www.software.ac.uk/
http://urssi.us/
http://wssspe.researchcomputing.org.uk/
https://ideas-productivity.org/
https://bssw.io/
https://doi.org/10.6084/m9.figshare.5328442.v3
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://rse.ac.uk/
https://www.software.ac.uk/
https://www.society-rse.org/

Software sustainability has gained increased attention in academia, and this deficit in career
paths in the US academic landscape has been recognized as a major challenge. Quite a few
projects and initiatives have been funded or formed in the US with diverse foci and approaches
that include improving career paths for RSEs, developers, facilitators, research programmers as
one of their goals - to name a few: URSSI, SSI, Science Gateways Community Institute (SGCI),
national RSE Associations forming in Germany, the Netherlands, and the US as well as
ACI-REF (Advanced Cyberinfrastructure – Research and Education Facilitators) and its
successor CaRCC (Campus Research Computing Consortium). All such projects recognize
improving career path as a long-term goal, since it requires a cultural change in academia and a
system incentivizing software development and facilitation to support research.

The diverse list of projects shows the interest in changing the culture in academia to support
career paths, but the interaction between these initiatives is still sparse. Many PIs, senior
personnel, and organizers of these projects are also involved in at least one other project, but
there is no systematic way for such organizations to collaborate. The implementation of URSSI
would aim at developing such a systematic way, provide successful use cases for career paths
at single universities, e.g. at Notre Dame and Princeton, analyze how this worked in the UK to
understand US similarities and differences, and would aim at improving access to tools and
standards that help universities hire diverse talent.

Patrick Aerts started out by dividing the issue in two major parts, with something in the middle:
the past (legacy), the future (just easy to maintain codes), and in the middle, the present where
we have to work on insights on how to create software in a sustainable manner and provide
education about this. He also presented three take-home massages to get things done:

1. Treat Software Sustainability and Data Stewardship on an equal footing, at least
policy-wise. Seriously consider linking up with RDA, under a separate chapter.

2. Consider Software (and data) as value objects. Then it starts making sense to spend
some to keep the value or increase it.

3. Make the stakeholders' positions explicit, define their role, and involve all of them.
Distinguish the interests of funders, scientists, and executive organizations.

His contribution stressed the importance of broadening the discussion on legacy to the whole
cultural sector: (national) libraries, (national) archives, digital born or digital supported art,
games, vision and sound collections, and science of course.

While it is understandable that in the HPC-domain, most of the interest is in best guidelines for
newly-to-be-designed software, the topic as a whole involves all the mentioned domains,
because many of their data did became unreachable, due to software that has stopped working
on new platforms. His estimate is that this involves mainly data from the 1990s and early 2000s.
A few examples.

● The games department: Communities are formed many keeping or reviving games.
● In art: older digital born artifacts suffer from obsoleted platforms and physically stopped

working. But one wants the arty experience to remain operational.
● The Dutch National Library keeps 15.000 CD-ROMs. Hardware to read these is hardly

available, so images were extracted from the CD-ROMs (but thou shall not copy), mostly
running under old operating systems (W95 or older), for which no licenses can be
obtained.

https://sciencegateways.org/
http://de-rse.org/
http://nl-rse.org/
https://usrse.github.io/usrseweb/
https://aciref.org/
https://carcc.org/
http://crc.nd.edu/
https://researchcomputing.princeton.edu/software-engineering

● Sometimes obsolete hardware is the only means to recover old data by using the old
software and start migrating from there (MS Word 4 or MacWrite, 400k or 800k
Apple-diskettes, just no name a few) This requires lists with coordinates of still working
old machinery.

● Compared to the challenges in the arts and gaming domains, reviving older scientific
software seems relatively easy.

His advice for the software legacy domain is to get all forces joined into one or more experts
networks, at an European, cross-Atlantic, or global level, and to start exchanging practical
experiences on how to solve specific problems.

It remains to agree on smart guidelines for developing new software. The Netherlands are
working on a web portal with the working title Software Deposit Route, with guidelines for what
to do with newly written academic software. The purpose of this effort is to make sure that no
matter which academic organization you ask the question of what to do with your software, you
will get the same advice. It will also contain directions for writing software properly if you have
not yet begun the coding. The eScience Center in the Netherlands also hosts a Research
Software Directory, with indexes to software with a proven level of quality. Also various
European ESFRI-type of EC-funded projects are designing their own software quality directives,
which need to be harmonized. And finally we are happy to send people to the knowledgebase of
the Software Sustainability Institute in the UK, which is basically ahead of many if not all, to
document best practices and practical advise on the matter.

Anshu Dubey presented her insights from working with the FLASH
(http://flash.uchicago.edu/site/flashcode/) code, which is composable multiphysics software
designed for simulating phenomena modeled with partial differential equations. The code has
been in existence for nearly two decades, and has grown from being a code for astrophysics to
serving six or more diverse research communities. All through its existence FLASH has
balanced between performance on one side, and flexibility, extensibility,and sustainability on the
other. Many of challenges faced by FLASH are common to all research software. These
challenges are:

● Because the real world is messy, obtaining modularity and encapsulation in software
modeling can be particularly difficult.

● As scientific understanding grows, so does the complexity of the code.
● With increasing platform heterogeneity, and increasing heterogeneity in solvers, there

are now two orthogonal axes of complexity that codes must contend with.
● All aspects of software development can be under research, including model, algorithms,

numerical techniques etc.
● Because teams developing such codes tend to have people with diverse training and

backgrounds, constructive interdisciplinary interactions are necessary, but can be
challenging.

● Incentive structures are not the same for all team members, which can lead to tension
for prioritization.

● Almost all projects compete for resources both internally and externally.

David E. Pearah presented his perspective on why “scientific” software faces unique
sustainability challenges as compared to “regular” software: the incentives are different, thus
motivations and efforts would be as well. He brought up three main issues:

http://flash.uchicago.edu/site/flashcode/

● Scientific software seeks minimum run-time time while regular software seeks minimum
code authoring time

● Scientific software’s main constraint is HPC cycles (hardware) while regular software’s
main constraint is programmers (both availability and cost)

● The timeframe for the life of scientific software is often just to support a single person to
publish a paper, whereas regular software’s goal is to support lots of strangers (forever)

Like many open source companies—particularly in the scientific domain—consulting is the only
financial engine to support the programmers, but nearly all new funding is tied to new features
and functionality, not software quality or maintenance. Also similar to many, though not all, open
sources companies, another avenue to seek sustainable investment is to create an “Enterprise”
or “Pro” version of the otherwise freely available software. This can sometimes be seen as
controversial since it goes against the spirit of open and free exchange. Pearah proposed that a
sustainable economy for open source needs to be created, simply starting with showing
appreciation and consideration for those projects that we all rely on every day.

Neil P. Chue Hong presented his perspective on why we should be aiming to write less
software to improve the sustainability of research software, based on experiences from the
Software Sustainability Institute and studies done by the SSI and others. He observed that a lot
of people write software, there is a wide variety of software that is used in practice, and that
much software that is referenced in papers is never updated after publication. To address these
issues, he proposed that we should, as a community, be “incentivising researchers to write the
smallest possible amount of new code” through measures such as encouraging them to build on
and extend existing software / platforms (e.g., through grant guidelines, making it easier to
discover software that meets needs); to treat these platforms as infrastructure, and fund
maintenance as such (e.g., through “taxation”); and to use this extra funding to enable research
software engineers to focus care on established software, as well as consulting on new
software. Overall, the challenge is to balance the desire to explore novel functionality with the
requirement to consolidate and improve software so that it can be scalably supported.

Henry J. Neeman presented thoughts on containers and their contribution to software
sustainability. In particular, he discussed the near term positive value of containers as a
mechanism to ensure software portability and therefore scientific reproducibility, but also the
likely medium to long term consequences associated with, ironically, the fact that making the
software more straightforward to port to new platforms can be expected to lead to a reduction in
software performance relative to (a) new platform capability and (b) growing run sizes.

Especially as hardware performance of later generations improves, some of these performance
improvements are unavailable to older containerized applications, because those containers
aren’t ported to new compiler versions that can exploit the new CPU capabilities (e.g.,
AVX/2/512 vs SSE1/2/3/4 vector instructions), and older compiler versions are much less likely
to be updated to be able to exploit these new CPU capabilities. For codes that are entirely
memory bound and that therefore gain no value from new CPU capabilities, this may be
acceptable, but for other codes, especially those that are at least partially CPU-bound (arguably
most STEM research codes), it will become increasingly difficult for researchers to keep up with
exponentially growing data and run sizes. At the same time, because containerization makes
porting (at all) to new platforms much more straightforward, it disincentivizes porting directly
onto these new platforms (that is, creating a new container with a new operating system, with

software built by a new compiler version, etc). And, the longer a software developer puts off this
porting, the more difficult the porting becomes, further disincentivizing the increasingly difficult
porting task.

In December 2018, Neeman published an invited blog post at the URSSI website that provided
greater detail on these ideas:
http://urssi.us/blog/2018/12/21/why-research-software-sustainability-wont-be-fixed-by-containers
/

Audience Input
After the panel presentations, we used an interactive polling platform (mentimeter.com) to get
feedback from the audience on a number of key questions, listed below.

We first asked if the audience members were here to learn about sustainability in general or
because they had a specific software project that has sustainability challenge. 41 said to learn
about sustainability in general, and 22 said because of a specific project.

Next, we asked what sustainability meant to the attendees. Results were:

● The software is ready to do the next new requirement at all times
● The software should be maintained and improve over time
● Making it possible to use and improve software over a long period of time
● Maintaining updating improving using
● Not proof of concept
● Better programming standards
● Long term support and maintenance
● Community
● Software engineering
● Works with changing architecture
● Have software that runs now and in the future
● Used more than 5 years later
● Software that is useful for the long haul - 20-30 years?
● Support to make it work somehow long term
● Ability to maintain software at a great level
● Long term support for software users
● Being able to keep software usable for existing users while being able to add new users
● The ability for future users to understand and use a code
● Someone, sometime in the future will be able to reuse and adapt said software
● Keeping software relevant with minimal manpower effort
● Shareable, portable, understandable by future developers
● Keeping older software functioning on newer systems
● Users can rely on it being maintained, or can contribute via an active community
● Being able to use the software on multiple architectures and be able to use the code for

the foreseeable future
● The nice model we implemented 5 years ago will still run in 5 years time
● Making software that will be usable and useful for the next several years

http://urssi.us/blog/2018/12/21/why-research-software-sustainability-wont-be-fixed-by-containers/
http://urssi.us/blog/2018/12/21/why-research-software-sustainability-wont-be-fixed-by-containers/
https://www.mentimeter.com/

● Ensuring the long term viability and use
● Software that is future proof
● Applying principles for good design in software engineering to scientific codes
● Software updates to keep up with hardware / compiler / library changes
● Continued availability of functioning software and access to support
● Code not written incurs no maintenance
● Robust to changes in technology
● Software that has at least the same features as N years ago
● Reliable, stable code that others can use more than once
● A way to keep a codebase relevant and useful over time
● Keeping useful software useful
● The ability to improve software in both an economical and timely manner
● Longevity, reliability
● Software is maintained and incremental development is supported to address ongoing

needs of the users and adaptation to new architectures
● Software is usable and easy to maintain as long as needed
● a) Being able to re-run my experiment, and b) being able to run a new experiment with

the same software
● Extensible and easy to update
● Ease of use for new adopters. Backwards compatibility. Low transactional cost for

development
● As little cost as possible to port to new architectures
● It doesn't give me a heart attack when I hear "porting"
● Maintaining value, improvability/flexibility, accessibility of code
● Reusable, lasts for at least 10 years, bug free development, documented, easy to use
● Software/hardware independence/resilience/use/maintenance over time
● Software that continues to meet the needs and expectations of users long term such that

they do not abandon it
● Create, use, maintain research software. The challenge is software fixes, maintenance,

portability, and enhancements. People is key
● The cost of changing software shouldn't grow nonlinearly over time

The common points in these suggestions are longevity and adaptability to changes (in user
needs, platforms, etc.)

We then asked attendees for an example of software that they consider sustainable, and the
top reason they think it is sustainable, and were told:

● BLAS--provides framework/building blocks for architecture independent optimization
● Jupyter, it's well funded
● Root, a large domain specific community uses it and increasingly other communities.

Maybe CERN has something to do with its sustainability.
● Emacs
● Python, because it has thriving communities of both users and maintainers
● LLVM. Corporate support $$$
● Linux - because there is a community contributing to it
● Nothing indefinitely

● LLVM due to large, active community
● LAPACK - it still forms the core of so many applications and libraries
● Microservices - small software delivering specific functions
● Intel MKL, emacs, Linux, iOS
● Git
● Python
● Lapack - well established interfaces and strong testing
● Fortran It's still around
● Linux - broad usage, diverse use cases, very large community, many businesses
● nixpkgs
● Quantum espresso - community
● Linux. It has a large user community, including developers and organizations

contributing resources (money and time) to continue development and support
● c/c++: fundamental usage
● MPI libraries. FFTW. Compilers - gcc etc.
● Gcc
● Python: large enough community to get the snowball rolling pretty well on its own.
● MPI stacks because of many users and outside interest
● Vtk (visualization toolkit) is an open source library developed by the community that has

been developed for over 20 years and has had long term funding to sustain it
● C/C++. Because of community engagement, broad usage and support
● OpenMPI - modular, well-designed, strong community
● Many of the UK's Collaborative Computing Projects (CCPs): Long term stable funding

and stable development teams (not just PhD students). Good software engineering.

One common element among these responses are projects that are generally very
widely used, across disciplines, or in other words, those who had large communities
who could sustain them. Another common element is long-term funding, either from
grants or from industry. A final element is software engineering or code organization
that makes sustainability more likely.

Next, we asked the attendees if their community considers sustainability an unsupported or
unjustifiable overhead. The results were almost evenly split, with 20 saying yes and 19 saying
no.

We then asked attendees why they care about sustainability (beyond just availability / e.g.,
posting code on GitHub). 50 responded, choosing from the following options:

● 17: Enabling others to go further
● 10: Prevent reimplementation
● 9: Reproducibility
● 9: Increase impact
● 4: Need the software yourself
● 1: Want more users

We asked attendees what they consider the biggest challenge to sustainability, and 52
responded, choosing from the following options:

● 14: Prioritization of other things
● 14: Funding / resources for bug fixes / maintenance
● 9: Time / lack of extra effort
● 7: Finance / money
● 7: Funding / resources for refactoring / rearchitecting
● 1: Ability (inability) to extend / reset codebase

Finally, we asked what strategies attendees are using to increase sustainability for their
software. 36 people responded, choosing the following options (multiple responses were
allowed):

● 24: Seeking institutional support
● 18: Educating funding agencies that your software is needed
● 10: Seeking letters/testimonials to help attract new grant funding
● 4: Selling support
● 4: Selling higher level functionality / features for money
● 4: Building a paid membership community / consortium

Conclusions

A few of the key points that came out of the workshop follow. How to address these points is
somewhat open, but some of the organizations represented by the panelists are well-suited to
start this process. In addition, a newly created umbrella organization, the Research Software
Alliance, might serve as a means to coordinate these and other organizations to do this.

Both panelists and member of the audience agreed that well-organized code with software
engineering practices in place has a better chance of being sustainable and of being widely
adopted. Follow-on might include involving the software engineering community in gathering
data to support this, and publicizing the results.

While there is general agreement on the need for better software engineering practices and this
agreement can be broadened, the path to actually achieving it is not very clear. Certainly, a few
elements can seriously improve the situation: education, a robust incentive structure and proper
resources, but these need to be supported by hiring institutions, community and professional
organizations, and funding agencies.

We may well face a serious loss in digital born information, from the nineties and back, if we
can’t keep access to the software that created those data. This is a challenge for the repository
and curation community.

There appears to be a critical mass of users/contributors that can lead to a software project
becoming community supported and a software sustainability infrastructure that connects all
experts in the field. More study is needed in this area, and more specific recommendations for
good practices to develop such a community and infrastructure are needed. Some organizations
that are working in this area include The Carpentries, NumFOCUS, and Code for Science &
Society.

http://researchsoft.org/
http://researchsoft.org/
https://carpentries.org/
https://numfocus.org/
https://codeforscience.org/
https://codeforscience.org/

