
ar
X

iv
:1

80
7.

02
87

5v
1

 [
ph

ys
ic

s.
ed

-p
h]

 8
 J

ul
 2

01
8

HSF-CWP-2017-02

June 20, 2018

HEP Software Foundation Community White

Paper Working Group – Training, Staffing

and Careers

Dario Berzano,1 Riccardo Maria Bianchi,2 Peter Elmer,3 John Harvey,1 Roger

Jones,4 Michel Jouvin,5 Daniel S. Katz,6 Sudhir Malik,7 Dario Menasce,8 Mark

Neubauer,6 Albert Puig,9,a Graeme A. Stewart,1 and Christopher Tunnell10

1CERN, Geneva, Switzerland
2Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
3Princeton University, Princeton, NJ, USA
4Lancaster University, Lancaster, UK
5LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
6University of Illinois Urbana-Champaign, Urbana, IL, USA
7University of Puerto Rico, Mayaguez, PR, USA
8INFN Sezione di Milano-Bicocca, Italy
9Physik-Institut, Universität Zürich, Zürich, Switzerland

10University of Chicago, Chicago, IL, USA
aSupported by SNF under contract 168169.

Abstract: The rapid evolution of technology and the parallel increasing complexity

of algorithmic analysis in HEP requires developers to acquire a much larger portfolio

of programming skills. Young researchers graduating from universities worldwide

currently do not receive adequate preparation in the very diverse fields of modern

computing to respond to growing needs of the most advanced experimental chal-

lenges. There is a growing consensus in the HEP community on the need for training

programmes to bring researchers up to date with new software technologies, in par-

ticular in the domains of concurrent programming and artificial intelligence. We

review some of the initiatives under way for introducing new training programmes

and highlight some of the issues that need to be taken into account for these to be

successful.

http://arxiv.org/abs/1807.02875v1

Contents

1 Introduction 2

2 Career Paths for Software Experts 2

3 Training needs of the community 4

3.1 Classification of trainees 4

3.2 Knowledge that needs to be transferred 5

4 Advancing Training in HEP 5

4.1 Initiatives for Future Training Programmes 6

4.2 Web Based Training 7

4.3 Enhancing Current Training Programmes 9

4.4 Resources and Incentives 10

5 Other resources 11

6 Conclusions 12

Appendix A Training Topics of Interest 13

Appendix B Research Data Science Curriculum 14

References 15

– 1 –

1 Introduction

The field of high energy physics (HEP) has consistently exploited the latest inno-

vations in computational tools and technologies for processing data. The software

toolset of the particle physicist is ever-growing, and the problem set increasingly

complex. Young researchers will likely encounter a number of programming tech-

niques with which they are totally unfamiliar, and will therefore need “on-the-job”

training in order for them to be productive.

Evidently a strong research community comprises independent thinkers who ask

research questions and direct their own analyses, instead of blindly following prescrip-

tions and recipes. It is therefore imperative that training opportunities and resources

are made available, such that adequate career path possibilities exist for people in

HEP who would otherwise leave the field due to limited advancement opportunities.

To produce the best possible science, it is important that physicists can easily

acquire essential software engineering skills. The nature and level of the expertise a

physicist needs to acquire will vary according to the problems that need to be tackled.

For example, basic data analysis requires familiarity with the Python programming

language and with a broad range of data analysis libraries in current usage. However,

those wishing to contribute to large open source projects, such as ROOT, require

greater training in the use of software engineering practices that cover the full devel-

opment life-cycle. Clearly a thorough understanding of the physics problem domain

is essential, making it necessary to provide a career path for those young physicists

willing to invest time and effort in becoming software specialists.

In each HSF workshop, a consensus on the need for proper tutoring, training,

and relevant career possibilities emerged as the basic ingredients for ensuring success.

The main requirements and challenges to be faced were identified as follows:

• to encourage and provide incentives to the members of the HEP community to

train students and other collaborators,

• to properly assign credit to software development as a scientific discipline,

including training activities,

• to establish policies for the hiring and long-term retention of researchers spe-

cialising in computing,

• to address the gap in formal software training that is not always given by

universities as part of a physicist’s education.

2 Career Paths for Software Experts

The introduction and development of sophisticated software tools has led to improve-

ments in the performance of our data processing software. The personnel who drive

– 2 –

these advances through novel implementations work on a broad range of tasks, in-

cluding the development of high speed DAQ systems, of modern databases for storing

the state of a detector, the management of data flow from the first trigger level to the

final analysis dataset, as well as the development of algorithms and mathematical

tools for extracting publishable physics results.

As tools become more complex, physicists must be continuously retrained in

order to utilize them effectively. It is important to find a way to deploy training

efforts holistically and cross-experimentally, whenever possible, in order to avoid

unnecessary duplication of the effort involved. This will require organization and

coordination to ensure that different software teams can agree on common standards,

thereby allowing different experiments to adopt the same solutions in an efficient way.

Beyond the immediate benefit to the scientific community in having well-trained

collaborators, most people who start a physics graduate programme will have careers

outside of academia. This trend is reflected in several calls for proposals from national

scientific funding agencies that promote training in computer infrastructure areas,

such as the EU’s Horizon 2020 programme and those from the National Science

Foundation (NSF) [1, 2].

A key goal is to find incentives that will encourage increasing numbers of people

to dedicate their time and effort to train their colleagues. To be effective, the training

must be done by people who work at the cutting edge of the technology and who in

many cases are found among the youngest researchers. These are also the very same

people who are most in need of officially recognized credits for the advancement of

their careers. Currently, visibility and recognition is given mainly to those working on

data analysis projects, rather than to the development and support of the underlying

software. One solution to this problem would be the establishment of specific career

paths for researchers specialising in scientific software development. However, the

practical implementation of such an approach is extremely challenging, as there are

a wide range of institutions involved that belong to different countries with their own

policies, priorities, and funding strategies.

Broadly speaking, two scientific profiles of researchers could be envisaged. A

physicst could make a detailed plan of what they need, expressed in a tidy require-

ments document, and a computer scientist could use this document to provide the

required solution. This is how the software development process typically works in

the software industry. However, in HEP requirements are rapidly changing, forcing

developers and physicsts to interact closely during the entire process of software de-

velopment. This works smoothly only when both communities have the same goals

and speak the same language, hence the need for physicists with a good knowledge

of computer science.

The first possible career path would be that of a physicist with computing science

specialisation, also known as a physicist-programmer in some communities. (It would

be conceptually different to that of a computer scientist as the two have different

– 3 –

goals, seek different paths to the solution of their problems, and usually do not even

share the same language.) Such people would have an active role in physics analysis,

and so meet many of the criteria needed for an academic career path.

The second would be the path of a domain-specific software engineer. Such a

person has the primary role of developing software and finding software solutions,

but with a large domain-specific knowledge to understand relevant use cases and the

available solutions. Such posts are almost impossible to establish in current academic

institutions; rather being seen by many funding agencies and universities as short

term technical positions. This does not allow domain specific expertise to be aquired

or retained in our field.

Both career paths suffer in academic terms from few or poorly cited publications,

few opportunities to win grants in their own right and little opportunity for impact

with commerce and wider society. These three failings make an academic appoint-

ment challenging or disfavoured as compared to other applicants. However, there are

measures that can be taken to address all three weaknesses, which we expand on in

the remainder of this document.

3 Training needs of the community

The HEP community consists of people with diverse software experience, interests,

and time availablity to learn new techniques. Any training programme must take

into account the variation in target audiences. For example, an undergraduate doing

a summer research project has different needs and skills than their professor.

3.1 Classification of trainees

For purposes of training we can broadly classify four different experience levels:

• Beginner : New collaborators with no knowledge of the tools or techniques they

are expected to use. These are people in need of some kind of formal training

in modern computing techniques, such as compiled and scripting languages,

together with operating system basics such as filesystems, version control, and

command-line shells.

• Intermediate: People with some experience in concepts and tools, but looking

to supplement their experience with more recent and modern approaches.

• Advanced : Experts who have mastered current technologies and implementa-

tions and who want to stay up-to-date with new advanced developments.

• Software Specialists : HEP scientists in charge of software development in areas

not limited only to analysis, such as DAQ systems, computing infrastructure,

databases, pattern recongition, and complete frameworks.

– 4 –

Each of these groups has very different training needs. However, whenever pos-

sible, any training programme should take advantage of developments in pedagogy,

such as active learning [3], peer learning [4], and web-based training.1 In some cases,

it may even be advantageous to hand out code samples that are purposely broken

or flawed, and ask students to fix or improve them. Learning the material in a way

that sticks is difficult and challenging for both the students and the instructor and

often takes more time than we would prefer. However, this is the best way to educate

scientists who can fully contribute to the physics programmes at large, which is really

the ultimate goal of any training programme.

3.2 Knowledge that needs to be transferred

At all stages of software and computing training, we should take care to encourage

good practices across the community, such as ensuring error checking, modularity of

code design, version control, writing tests, etc. All the key concepts addressed in

training should not be specific to a particular experiment or field of application, but

general enough to be useful to the whole HEP community and beyond. A number of

specific concepts need to be taught, in order to guarantee the basic level of compe-

tence needed to write efficient code for the various tasks that need to be performed

in HEP experiments. These include programming concepts, data structures, basics

of code design, error checking, code management tools, validation and debugging

tools. More advanced topics include modularity of code design, advanced data struc-

tures, evaluation metrics, writing tests and working with different types of hardware

accelerator. Additionally, special emphasis should be given to reporting results and

documenting them.

Some of the training subjects considered important to pursue are listed in Ap-

pendix A.

4 Advancing Training in HEP

The implementation of training should employ different training formats, such as

videos, wikis, lectures, jupyter notebooks and advanced visualizations, etc., so that

people can learn in a familiar and effective manner and in such a way that experts

are encouraged to share their knowledge.

An important point to consider is the difficulty, often experienced in the past, in

developing large software programs across different experiment collaborations. While

there already are experiment-specific training efforts in place, there are many needs

that are in common. Establishing a common training programme could help facilitate

the sharing of exprience amongst different experiments. This would reduce duplica-

tion of efforts and enable growth of a shared training culture by accumulating and

1See §4.1.

– 5 –

sharing expertise. To realise this goal, a possibility could be the creation of a federa-

tion of training initiatives, aimed at improving the efficiency and cost-effectivness of

this important activity. An appropriate incentive programme to reward those who

train the community might help to facilitate the goals of such an initiative.

When trying to exchange training materials within a group the first problem is to

convince authors to contribute their work. This issue can be alleviated by addressing

the correct assignment of intellectual property. Another problem is that trainers do

not like to reuse given material as-is. They usually want to refactor it, building

their own training history. This makes it difficult to have everyone agree on common

approaches. It is even challenging to agree to host material in the same centralized

place. A way to overcome this could be to settle for a centralized catalog, with each

author being free to host their material in their location of choice.

Another challenge is the wide range of student competence. Special care must be

given to setup a training structure that can manage both introductory and advanced

material. This may be addressed by organising course material as a large number of

independant topics. The IN2P3 authors try to restrict their tutorials to 25 minutes,

as inspired by the Pomodoro technique[5], so that one can easily jump and compose

one’s own curriculum. However, it turns out to be tricky to keep such small tutorials

really independant and meaningful when they can be selected at will.

All trainers have also faced the tremendous loss of time in software installation for

any practical exercises as many students have not managed to prepare their machines

in advance. Here containers may bring real progress, provided that everyone has at

least Docker[6] installed on their machine. JupyterHub[7] is a technology which

supports training sessions without the need for specialist installations.

4.1 Initiatives for Future Training Programmes

Some methods that can be used for location independent training include Massive

Online Open Courses (MOOCs), hands-on workshops, online knowledge bases, expert

trainer volunteer networks, and web-based training approaches.

MOOCs can be used to develop an open-source set of tutorials and tools. Existing

online courses such as Udacity [8] and Coursera [9] can be evaluated and exploited by

the community. A novel approach such as WikiToLearn [10] could also be explored

to assess potential benefits (as has already been attempted in the context of the

GridKa School of Computing [11], see below).

Experiment-specific and global knowledge bases can be established with incen-

tives for experts to contribute. They can be open-source so that a lot of knowledge

can be added by the trainees themselves as information is learned; this is the partic-

ular context where an approach such as WikiToLearn could be of great help.

Question-and-answer websites such as Stack Overflow [12] for HEP are also a very

useful resource for common problems and questions. This approach has already been

considered by HSF start-up members, and turned out to be difficult to pursue due

– 6 –

to the lack of a critical mass needed by Stack Overflow, but in the future, boundary

conditions might change, making this approach viable.

Hands-on workshops are an invaluable part of learning how to apply theoretical

concepts in practice. Identifying which of the current workshops are productive and

useful, and if they cover all the topics that need to be transferred and that are in

demand by the students, is an important action item.

Creating an expert tutor volunteer network is another way to provide training

and support to the community. This of course requires proper recognition, at least

in terms of career prospects as an incentive for young researchers. It is clear that

the best possible tutors are, in principle, those people who are actively engaged in

modern software developments: these are often young researchers in the first steps

of their careers and, in order to be attracted to devoting substantial time to training

and tutoring, they must be assured that such an effort would be properly recognised

in an official way. Such kind of recognition is not currently implemented, at least

not in a standardized or official way. A possible structure for such a network could

be the establishment of a federation of existing schools, as discussed in §4.3.

4.2 Web Based Training

Difficulties that have emerged in the past with respect to implementing training

courses are the lack of funding and the lack of available time by experts in the

field. People with enough expertise or insight usually don’t have time to devote to

prolonged periods of student training, and, even when they can find time, the cost of

setting up a training course in an effective way is often beyond what is made available

by funding agencies (funds for travel, hosting, setting up a room with a computing

infrastructure to allow interactive hands-on session, etc.) A possible solution is a

completely different approach to training, using a web-based platform to provide

training materials to students. This would be complementary to the already existing

and successful efforts such as the CERN School of Computing’s Bertinoro and KIT

ones.

The web based approach has several advantages over traditional ones:

• Tutors can add material to the web site at a very slow pace (whenever they

find time to do it, one slide a week or a chapter a day) .

• Their material, publicly available on a web-site, can be further expanded by

collaborators (also at their own pace) or, even better and more productively,

by students who decide to contribute new additions, examples, exercises etc.

Such a collaborative effort allows more people to be exposed to training at any

given time, creates a sense of community, and creates bridges between people in

contiguous areas of research. Students can use the same platform to exchange

their own examples, make suggestions and point out interesting concepts. In

– 7 –

such a model, the possible contribution from others to the training material

needs to be moderated and validated with appropriate policies.

• If complemented by the availability of remote virtual machines (possibly via

a browser), students could have access to examples and exercises that are al-

ready embedded in their own natural environment: all the necessary tools and

libraries needed to implement the exercise will be already available in the vir-

tual machine (possibly a Docker container). With just a web browser, students

could run complex examples from home, taking advantage of a remote facility

that provides some storage and computing power. Important here is the con-

cept of “environment”: a Docker container could be set up in such a way that

students will work in an exact replica of the environment they will be exposed

to in their experiment. Moreover, students could be provided with Docker con-

tainers that preserve their modified environment across sessions, allowing them

to develop their skills over a prolonged period of time by accessing all the files

that were made persistent day by day during the training.

• There would no longer be a need to find the resources to host a school and pay

the tutor(s) (and eventually subsidize the students to participate in training in

a remote location). Students could follow the training at their own pace from

wherever they happen to be. A traditional school only lasts for 5 days (10 at

most) and it is difficult to cover a subject to any significant depth in such a

short time. The web approach, instead, would allow for very long and in-depth

coverage of any kind of subject, and in this sense it could be a complementary

approach to a traditional school. Of particular interest could be courses such

as “Machine Learning”, “Statistical Analyis with ROOT”, or even just “Good

practices in C++” or “Python Programming for scientific computing”.

• Finally, this approach could allow the creation of browsable repositories of all

training materials, grouped by argument, by relevance, by experiment or what-

ever other critieria. Students from all over the world could be exposed to a

large repository of examples, exercises and in general training material from

their own home.

An example of a such a web-based platform already exists, and has been imple-

mented as an Open Source project (backed by Wikimedia) by a group of more than

30 Italian students. The project is WikiToLearn [10]. It hosts training material in

several languages, for several disciplines, ranging from Economics to Physics, Math-

ematics, and several others. Because it is based upon wikimedia [13] software, it is

very easy to add material to the site, and to make it appear under a specific topic

(such as Software/Techniques/Machine-Learning) and to manipulate it as if it were

a single document. In the end, students can selectively choose individual chapters

– 8 –

from the site and have the corresponding pdf sent them as a book, complete with

index, content, and chapters.

The adoption of such an approach is made rather easy in WikiToLearn by the

relative simplicity of the wikimedia-based toolset: users contribute their training

material using just a web-browser, and in order to do this efficiently, the necessary

learning curve has been kept appropriately shallow. An interesting exercise in this

context has recently been made by colleagues of the GridKa School of computing: the

material from this year (2017) has been made publicly available on WTL [14]. This

constitutes an interesting example of what can be accomplished using this platform;

it is just a first example of what is possible, but an inspiring one.

Another example of web-based platform is a collection of online tutorials (mostly

written in French) hosted on the Gitlab IN2P3 server [15]. Taking advantage of the

Gitlab ability to host Docker images, those tutorials aim to avoid the “damned in-

stallation step” that often absorbs half of a training session. Similarly to the GridKa

School for WikiToLearn, the annual IN2P3 Computing Days are an opportunity to

refresh and extend the collection of tutorials every year. Future work will focus on

English translation, and the development of a web site which will index the above

tutorials, together with the best recommended external tutorials.

Finally it should be important to evaluate, if and to which extent, the com-

plementary approaches to training, such as schools and dedicated web-site courses,

could be of mutual benefit, in other words how to make them efficiently cooperate

in the development of a complete training program.

4.3 Enhancing Current Training Programmes

To achieve our goals for training the community, we can take advantage of existing

training forums. Resources such as conferences, workshops, and schools (in person

and online) can provide a lot of value for our training purposes with little effort to

set up. We should leverage the existing training forums that most closely match the

HEP community’s needs.

Within the HEP community, there are already some working examples of dedi-

cated training environments that alternate between general topics and experiment-

specific topics. The LHC Physics Center (LPC) at Fermilab hosts Hands-on Ad-

vanced Tutorial Sessions (HATS) [16] throughout the year to introduce and train

participants in topics as diverse as the latest b-tagging algorithms, Git/GitHub, and

machine learning. These HATS provide face-to-face time with instructors and par-

ticipants at Fermilab, and also allow remote collaborators to join in by video and

complete the same online exercises. A similar approach is in use in the CMS Data

Analysis Schools (CMSDAS) [17], a series of week-long workshops that now take

place at multiple labs all over the world and are designed to ramp up new collabo-

rators in CMS-specific analysis tools while providing some discussion of the physics

as well.

– 9 –

Other examples are CERN School of Computing [18], CERN OpenLab Software

workshops [19] education in collaboration with industry partners, and a series of

more advanced topical training courses provided by MPI Munich and DESY that

focus on advanced programming, use of acceleration hardware and statistical tools

including machine learning. This list includes the Bertinoro [20], GridKa [11], and

CODAS-HEP [21] Schools of Computing.

Over the past decade, MOOCs have been developed by universities and private

organizations. They have been well received by industry and academia. In addition,

they provide a lot of flexibility in terms of cost and use of time; they are typically

free and open for enrollment at any time of the year. Since the material can be

accessed at any time and revisited at any time, they can be completed at a pace that

makes sense, for example, for a physicist who needs to learn machine leanrning in a

piecemeal way.

There are a growing set of MOOCs teaching various subjects. Since there are

many options, there is a wide variety with respect to the depth of the material and

specific tools taught. Exploring these options allows us to choose which is the right

offering for the knowledge needed to work on a specific experiment. We can pick and

choose modules to tailor an appropriate roadmap of skills to learn. More difficult

will be to assemble specific training material not already avaible elsewhere in an

efficient and organized way, since this requires adequate organization, volunteers and

a suitable infrastructure.

Several industry conferences already exist that bring together those in academia

and industry who are at the cutting edge of these techniques. Conferences such as

NIPS [22] and PyData [23] provide a focused place where attendees can learn a lot

about machine learning in a short period of time. Machine learning concepts such as

current methods, tools, and problems facing industry and academia can be learned

at conferences. In addition, conferences are an excellent networking opportunity;

attendees can meet and share ideas with fellow learners and experts. Bonds can

be formed quickly at conferences that can be maintained after the duration of the

conference. These connections to the outside community can be essential since we

will be evolving training materials to ensure that they stay relevant over time.

For example, at the time of this writing, Coursera [9] and Udacity [8] both provide

great machine learning massive open online courses at no cost. These two courses

both provide a great foundation for assimilating machine learning fundamentals.

However, Coursera’s approach emphasizes more theory (with more math background

necessary) and uses MATLAB/Octave while Udacity’s approach emphasizes more

practical aspects using machine learning techniques using Python tools.

4.4 Resources and Incentives

It should be considered that some graduate student advisors, might need to be en-

couraged to make sure their students are properly trained. Sometimes, students are

– 10 –

instead pushed to learn the bare minimum to get the work done, at the expense of

a broader training/education curriculum that could actually yield improved results

further down the line. One incentive would be to provide training programmes that

also count as course credit, perhaps as an elective. This model is already in limited

use with some online solutions [24], but this is not universal. Discussions should be

started with collaborators at higher education institutions to see what the roadblocks

or opportunities would be for these training sessions to serve double duty. It should

also be considered that not all students will end their career in research or academia:

their contribution to the research activity, as students, should therefore also provide

them knowledge, know-how, and skills considered a valuable asset by industry, in

order to increase their chances of a career outside research.

Training is something that a large cross-section of the community understands

to be important, but finding time and effort to contribute to this project is not

actively on the radar of most potential volunteers. Providing incentives for their

participation and creating the appropriate platforms can go a long way to reach a

productive training environment. It can be as simple as inviting someone to give a

software tutorial on the subject that they are familiar with, give a lecture or seminar

or contribute to a growing knowledge base.

Another important incentive is recognition. For younger members of the commu-

nity, having the opportunity to create a training resource, such as a software tutorial

or a knowledge base on a particular topic, is very empowering and motivational to

continue the efforts of training others. Engaging younger members of the community

is crucial to long-term success of HEP training endeavors.

In the context of web-based training, if the HSF helps to constitute a living

collection of online tutorials, we could organize regular events such as a “Tutorial of

the month”, or some sort of “like” system for the students to support their favorite

tutorials. The best authors must be recognized, so that they can showcase their most

popular online tutorials, just the same as their research publications.

It is also critical to incorporate training into grant proposals so that it can be

connected with other areas such as research and development. Efforts like DIANA-

HEP [25] and AMVA4NewPhysics [26] that combine training and software develop-

ment are good examples of such ideas in practice. More examples of such efforts are

needed.

5 Other resources

Software Carpentry [27] and Data Carpentry [28] are two parts of The Carpentries

organization that collaboratively build and teach some of the basic concepts in de-

veloping and maintaining software, and analyzing data, respectively. The materials

that they develop and use are open, and can be customized for science domains (e.g.,

HEP), or participant groups (e.g., undergraduates). Their model is that they offer

– 11 –

training of trainers, and then the trainers who have graduated can offer training

under the SC/DC names, though of course, anyone can use the SC/DC materials

without doing it under the SC/DC names. Subjects covered in a typical Data Car-

pentry school are given in Appendix B.

While Software Carpentry is leveraged to build a foundation of knowledge for

later more advanced concepts, it is important to note much of this material is de-

veloped specifically for this course and not a part of a larger Software Carpentry

programme. This course focuses on a shallow but wide building of foundational

skills approach, introducing many base concepts but not going deep into any one

concept, with a through line of Open Science and Ethical Data Usage.

6 Conclusions

The HEP community by and large acknowledges and recognizes the great importance

of training in the field of scientific computing. This activity should encompass several

types of students, from undergraduates, to young researchers, up to senior physicists,

all of them in need of an appropriately designed training path in order to be proficent

in their scientific endeavours.

We have identified a certain number of problems that need to be overcome in

setting up an appropriate training programme:

• Costs and relative funding

• Incentives

• Career paths

• Overall organization across experiments, countries and corresponding Funding

Agencies

For each of these points we have provided an overview of the current situation

and made proposals to improve the situation in HEP. The ideas presented need to be

developed further and concrete actions in the community need to be implemented,

which we will undertake in the HSF Training Working Group[29].

– 12 –

A Training Topics of Interest

• Basic and Advanced Programming Concepts

– Object oriented paradigm

– Compiled langauges (C++)

– Scripting languages (Python, Javascript,...)

• Algorithms

– Boost library

– STL algorithms for containers

– R and/or ROOT

• Frameworks (development or application level)

– Qt

– ROOT

– experiment specific frameworks (possibly if of potential interest outside

the originating experiment)

• Code design (design patterns)

• Development tools

– IDEs (Integrated Development Environment)

– Debuggers

– Profilers

• Evaluation metrics

• “Trust” metrics such as data driven tests

• Specific software implementation training

• Good practices

• Code style and clarity

• Scripting and data cleaning

• Reporting results reproducibly

• Writing Documentation

– 13 –

B Research Data Science Curriculum

This list is taken from the curriculum of the CODATA-RDA Research Data Science

Summer School in progress in Trieste, Italy during July 2017.

(http://indico.ictp.it/event/7974/):

• Introduction

• UNIX Shell programming (Software Carpentry Module)

• GitHub (Software Carpentry Module)

• R (Software Carpentry Module)

• BYOD (Bring Your Own Data) best practices

• Data Management with SQL (Software Carpentry Module)

• RDM Storage Management

• Visualisation

• Machine Learning Overview - Recommendation

• Recommender Systems

• Artificial Neural Networks and other Machine Learning Systems

• Research Computational Infrastructure

– 14 –

References

[1] Training-based Workforce Development for Advanced Cyberinfrastructure

(CyberTraining) Webinar. url:

https://www.nsf.gov/events/event_summ.jsp?cntn_id=190179&org=NSF.

[2] Cyberinfrastructure Training, Education, Advancement, and Mentoring for

Our 21st Century Workforce (CI-TEAM). url:

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12782.

[3] Active learning approach. url:

http://www.crlt.umich.edu/tstrategies/tsal.

[4] Peer learning approach. url:

https://en.wikipedia.org/wiki/Peer_learning.

[5] Pomodoro Technique. url:

https://en.wikipedia.org/wiki/Pomodoro_Technique.

[6] Docker Containers. url: https://www.docker.com/.

[7] Jupyter Hub. url: https://jupyterhub.readthedocs.io/en/stable/.

[8] Udacity. url:

https://www.udacity.com/course/intro-to-machine-learning--ud120.

[9] Coursera. url: https://www.coursera.org/learn/machine-learning.

[10] WikiToLearn: a web-based collaborative tool to share knowledge. url:

https://it.wikitolearn.org/.

[11] The GridKa School of Computing. url:

http://gridka-school.scc.kit.edu/2017/.

[12] Stackoverflow. url: https://stackoverflow.com/.

[13] WikiMedia. url: https://www.wikimedia.org/.

[14] Gridka learing material published on WikiToLearn. url:

https://en.wikitolearn.org/GridKa2017.

[15] The Code Swim Coaches. url: https://gitlab.in2p3.fr/MaitresNageurs.

[16] The LHC Physics Center (LPC) Hands-on Advanced Tutorial Sessions. url:

http://lpc.fnal.gov/programs/schools-workshops/.

[17] The CMS Data Analysis Schools (CMSDAS). url:

http://lpc.fnal.gov/programs/schools-workshops/cmsdas.shtml.

[18] The CERN School of Computing. url: https://csc.web.cern.ch/.

[19] The CERN OpenLab Software workshops. url: http://openlab.cern/.

[20] The Bertinoro School of Computing. url:

https://web.infn.it/esc17/index.php?lang=en.

– 15 –

https://www.nsf.gov/events/event_summ.jsp?cntn_id=190179&org=NSF
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12782
http://www.crlt.umich.edu/tstrategies/tsal
https://en.wikipedia.org/wiki/Peer_learning
https://en.wikipedia.org/wiki/Pomodoro_Technique
https://www.docker.com/
https://jupyterhub.readthedocs.io/en/stable/
https://www.udacity.com/course/intro-to-machine-learning--ud120
https://www.coursera.org/learn/machine-learning
https://it.wikitolearn.org/
http://gridka-school.scc.kit.edu/2017/
https://stackoverflow.com/
https://www.wikimedia.org/
https://en.wikitolearn.org/GridKa2017
https://gitlab.in2p3.fr/MaitresNageurs
http://lpc.fnal.gov/programs/schools-workshops/
http://lpc.fnal.gov/programs/schools-workshops/cmsdas.shtml
https://csc.web.cern.ch/
http://openlab.cern/
https://web.infn.it/esc17/index.php?lang=en

[21] The GridKa School of Computing. url: http://codas-hep.org.

[22] NIPS. url: https://nips.cc.

[23] PyData. url: https://pydata.org.

[24] Training program. url: https://www.edx.org/credit.

[25] The DIANA/HEP project. url: http://diana-hep.org/.

[26] Advanced Multi-Variate Analysis for New Physics Searches at the LHC. url:

https://amva4newphysics.wordpress.com/.

[27] Software Carpentry. url: https://software-carpentry.org.

[28] Data Carpentry. url: https://www.datacarpentry.org.

[29] HEP Software Foundation Working Group. url:

https://hepsoftwarefoundation.org/activities/training.html.

– 16 –

http://codas-hep.org
https://nips.cc
https://pydata.org
https://www.edx.org/credit
http://diana-hep.org/
https://amva4newphysics.wordpress.com/
https://software-carpentry.org
https://www.datacarpentry.org
https://hepsoftwarefoundation.org/activities/training.html

	1 Introduction
	2 Career Paths for Software Experts
	3 Training needs of the community
	3.1 Classification of trainees
	3.2 Knowledge that needs to be transferred

	4 Advancing Training in HEP
	4.1 Initiatives for Future Training Programmes
	4.2 Web Based Training
	4.3 Enhancing Current Training Programmes
	4.4 Resources and Incentives

	5 Other resources
	6 Conclusions
	Appendix A Training Topics of Interest
	Appendix B Research Data Science Curriculum
	References

