
Katz, D S et al 2016 Report on the Third Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE3). Journal of Open Research Software, 4: e37,
DOI: http://dx.doi.org/10.5334/jors.118

Journal of
open research software

ISSUES IN RESEARCH SOFTWARE

Report on the Third Workshop on Sustainable Software
for Science: Practice and Experiences (WSSSPE3)
Daniel S. Katz1, Sou-Cheng T. Choi2, Kyle E. Niemeyer3, James Hetherington4,
Frank Löffler5, Dan Gunter6, Ray Idaszak7, Steven R. Brandt6, Mark A. Miller8,
Sandra Gesing9, Nick D. Jones10, Nic Weber11, Suresh Marru12, Gabrielle Allen13,
Birgit Penzenstadler14, Colin C. Venters15, Ethan Davis16, Lorraine Hwang17,
Ilian Todorov18, Abani Patra19 and Miguel de Val-Borro20

1 National Center for Supercomputing Applications (NCSA) & Electrical and Computer Engineering (ECE) Department & School
of Information Sciences (iSchool), University of Illinois at Urbana–Champaign, IL, USA

2 NORC at the University of Chicago and Illinois Institute of Technology, Chicago, IL, USA
3 School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR, USA
4 Research Software Development Group, University College London, GB
5 Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA
6 Lawrence Berkeley National Laboratory, Berkeley, USA
7 RENCI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
8 University of California, San Diego, CA, USA
9 Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA
10 New Zealand eScience Infrastructure (NeSI), University of Auckland, Auckland, NZ
11 University of Washington, Seattle, WA, USA
12 Indiana University, Bloomington, IN, USA
13 National Center for Supercomputing Applications & Department of Astronomy, University of Illinois at Urbana-Champaign,

Urbana, IL, USA
14 College of Computer Engineering & Computer Science, California State University, Long Beach, CA, USA
15	School	of	Computing	and	Engineering,	University	of	Huddersfield,	Huddersfield,	GB
16 UCAR Unidata, Boulder, CO, USA
17 University of California, Davis, CA, USA
18 Science & Technology Facilities Council, GB
19	Mechanical	and	Aerospace	Engineering,	University	at	Buffalo,	Buffalo,	NY,	USA
20 Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
Corresponding author: Daniel S. Katz

(d.katz@ieee.org)

This report records and discusses the Third Workshop on Sustainable Software for Science: Practice and
Experiences (WSSSPE3). The report includes a description of the keynote presentation of the workshop,
which served as an overview of sustainable scientific software. It also summarizes a set of lightning
talks in which speakers highlighted to-the-point lessons and challenges pertaining to sustaining scientific
software. The final and main contribution of the report is a summary of the discussions, future steps, and
future organization for a set of self-organized working groups on topics including developing pathways
to funding scientific software; constructing useful common metrics for crediting software stakeholders;
identifying principles for sustainable software engineering design; reaching out to research software
organizations around the world; and building communities for software sustainability. For each group, we
include a point of contact and a landing page that can be used by those who want to join that group’s
future activities. The main challenge left by the workshop is to see if the groups will execute these
activities that they have scheduled, and how the WSSSPE community can encourage this to happen.

(1) Introduction
The Third Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE3)1 was held on 28–29

September 2015 in Boulder, Colorado, USA. Previous
events in the WSSSPE series are WSSSPE12 [1, 2], held in
conjunction with SC13; WSSSPE1.13, a focused workshop

http://dx.doi.org/10.5334/jors.118
mailto:d.katz@ieee.org

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 2	of	31	

organized jointly with the SciPy conference4; WSSSPE25
[3, 4], held in conjunction with SC14; and WSSSPE2.16, a
focused workshop organized again jointly with SciPy7.

Progress in scientific research is dependent on the quality
and accessibility of software at all levels. Hence it is critical
to address challenges related to development, deployment,
maintenance, and overall sustainability of reusable software
as well as education around software practices. These chal-
lenges can be technological, policy based, organizational,
and educational; and are of interest to developers (the soft-
ware community), users (science disciplines), software-engi-
neering researchers, and researchers studying the conduct
of science (science of team science, science of organiza-
tions, science of science and innovation policy, and social
science communities). The WSSSPE1 workshop engaged a
broad scientific community to identify challenges and best
practices in areas of interest to creating sustainable scien-
tific software. WSSSPE2 invited the community to propose
and discuss specific mechanisms to move towards an imag-
ined future for software development and usage in science
and engineering. But WSSSPE2 did not have a good way to
enact those mechanisms, or to encourage the attendees to
follow through on their intentions.

The WSSSPE3 workshop included multiple mechanisms
for participation and encouraged team building around
solutions. WSSSPE3 strongly encouraged participation of
early-career scientists, postdoctoral researchers, graduate
students, early-stage researchers, and those from under-
represented groups, with funds provided to the confer-
ence organizers by the Moore Foundation, the National
Science Foundation (NSF), and the Software Sustainability
Institute (SSI) to support the travel of potential partici-
pants who would not otherwise be able to attend the
workshop. These funds allowed 16 additional people to
attend and participate.

WSSSPE3 also included two professional event organ-
izers/facilitators from Knowinnovation who helped the
organizing committee members plan the workshop
agenda, and during the workshop, they actively engaged
participants with various tools, activities, and reminders.

This report is based on collaborative notes taken during
the workshop, which were linked from the GitHub issues
that represented the potential and actual working groups8.
Overall, the report discusses the organization work done
before the workshop (§2), the keynote (§3), and the light-
ning talks presented at the meeting (§4). The report also
gives summaries of action plans proposed by the working
groups (§5), then gives longer descriptions of the activities
that occurred in each of the working groups that made
substantial progress (§6), and provides some conclusions
(§7). The appendices contain lists of the organizing com-
mittee (Appendix A), the registered attendees (Appendix
B), and the travel award recipients (Appendix C).

(2) Calls for Participation
WSSSPE3 was based on the work done in WSSSPE1
and WSSSPE2, but aimed at starting a process to
make progress in sustainable software, as the calls for
participation said:

The WSSSPE1 workshop engaged the broad sci-
entific community to identify challenges and
best practices in areas relevant to sustainable
scientific software. WSSSPE2 invited the commu-
nity to propose and discuss specific mechanisms
to move towards an imagined future practice of
software development and usage in science and
engineering. WSSSPE3 will organize self-directed
teams that will collaborate prior to and during
the workshop to create vision documents, pro-
posals, papers, and action plans that will help
the scientific software community produce soft-
ware that is more sustainable, including devel-
oping sustainable career paths for community
members. These teams are intended to lead into
working groups that will be active after the work-
shop, if appropriate, working collaboratively to
achieve their goals, and seeking funding to do
so if needed.

The first call for participation requested lightning talks,
where each author could make a brief statement about
work that either had been done or was needed, with the
goal of contributing to the discussion of one or more
working groups. There were 24 lightning talks submitted;
after a peer-review process, 16 were accepted, as discussed
further in Section 4.

The first call also discussed the potential action topics
that came out of WSSSPE2, and requested additional sug-
gestions. The combination of existing and new topics led
to the following 18 potential topics that were advertised
in the subsequent calls for participation:

• Development and Community
– Writing a white paper/review paper about best

practices in developing sustainable software
– Documenting successful models for funding spe-

cialist expertise in software collaborations
– Creating and curating catalogs for software tools

that aid sustainability (perhaps categorized by
domain, programming languages, architec-
tures, and/or functions, e.g., for code testing,
documentation)

– Documenting case studies for academia/indus-
try interaction

– Determining effective strategies for refactoring/
improving legacy scientific software

– Determining principles for engineering design
for sustainable software

– Create a set of guidance giving examples of spe-
cific metrics for the success of scientific software
in use, why they are chosen, what they are use-
ful to measure, and any challenges/pitfalls; then
publish this as a white paper

• Training
– Writing a white paper on training for developing

sustainable software, and coordinating multiple
ongoing training-oriented projects

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 3	of	31	

– Developing curriculum for software sustain-
ability, and ideas about where such curriculum
would be presented, such as a summer training
institute

• Credit
– Hacking the credit and citation ecosystem (mak-

ing it work, or work better, for software)
– Developing a taxonomy of contributorship/

guidelines for including software contributions
in tenure review

– Documenting case studies of receiving credit for
software contributions

– Developing a system of awards and recognitions
to encourage sustainable software

• Publishing
– Developing a categorization of journals that

publish software papers (building on existing
work), and case studies of alternative publishing
mechanisms that have been shown to improve
software discoverability/reuse, e.g., popular
blogs/websites

– Determining what journals that publish soft-
ware paper should provide to their review-
ers (e.g., guidelines, mechanisms, metadata
standards)

• Reproducibility and Testing
– Building a toolkit that could allow conference

organizers to easily add a reproducibility track
– Documenting best practices for code testing and

code review

• Documentation
– Develop landing pages on the WSSSPE website

(or elsewhere) that enable the community to
easily find up-to-date information on a WSSSPE
topic (e.g., software credit, scientific software
metrics, testing scientific software).

(3) Keynote
WSSSPE3 began with a keynote speech delivered
by Professor Matthew Turk from the Department of
Astronomy, University of Illinois, titled Why Sustain
Scientific Software?. Turk is a prolific scientific software
practitioner and has extensive experience working on
large collaborative projects employing modern comput-
ing tools [5]. He also co-organizes and champions WSSSPE
events.

In his keynote address, Turk recapped the course of
development of WSSSPE workshops over the past few
years, alongside his career development from a post-
doc to an academic. The first WSSSPE workshop was at
the Supercomputing conference (SC13) in 2013, but he
observed that the notion of sustainable scientific soft-
ware drew in an audience beyond supercomputing. In
the following year, WSSSPE1.1 at SciPy had speakers talk-
ing about how software has been sustained inside the

scientific Python community. WSSSPE2 at SC14 had break-
out group discussions coming up with actionable items,
and WSSSPE2.1 at SciPy 2015 was similar. Turk noted the
different atmosphere of the surrounding large confer-
ences, despite similar WSSSPE participants.

WSSSPE3 left the traditional Supercomputing
Conference environment this year, and in Turk’s words,
this change spoke to the fact that scientific software
comes from many different types of inquiries, deploy-
ment, strategies for maintenance, users, and ways of
measuring the value of a piece of software. It appeared
to Turk that the supercomputing community generally
adopts some top-down approaches, whereas the SciPy
community more often than not uses more bottom-up
systems. According to Turk, there is a divergence in views
about progress in software: the supercomputing commu-
nity thinks that software is getting harder, with exascale
computing and optimization issues in mind; but the SciPy
community thinks that software is becoming better, with
emerging tools such as Jupyter and productivity packages
for research workflows. Admitting such comparisons are
somewhat unfair generalizations, Turk reminded the audi-
ence that the different approaches bring different types
of ideas to the table, and he welcomed WSSSPE3 being
conducted outside existing preconceptions.

Returning to the topic of his talk, Turk invited the audi-
ence to picture scientific software as a flower on a land-
scape under the Sun, which may represent a number of
measurable factors such as number of citations; growth
of a community and number of contributors; amount of
funding; prestigious prizes awarded; stability of the com-
munity in terms of leadership transitions, serving commu-
nity needs, not breaking test suites, and performance on
new architectures. But all these metrics are strictly speak-
ing proxies for the values and the impact scientific soft-
ware bears. What we can measure does not give us direct
insight—it just gives us proxies of insight.

Turk then moved onto various different definitions of
sustainability. His favorite one was “keeping up with bug
reports,” where even if no new features were added, the
software remains sustainable. Another definition of sus-
tainability Turk mentioned was “adding of new features,”
or “maintaining the software for a long period of time”
such as the cases of TEX or LATEX with community help. A
notion Turk heard often at supercomputing conferences
was that sustainable software “continues to work on new
architectures.” Yet another metric was “people continuing
to be able to learn how to use and apply the software.” A
funder Turk heard talked about sustainability as “continu-
ing to get funded.” Turk also recalled that Greg Wilson,
among others, said in WSSSPE1.1 that his view of sustain-
able software was software that “continued to give the
same results over time.” A last measure of sustainability
Turk presented was “the ability to transition between dif-
ferent people developing and using a piece of software.”

At WSSSPE1, several models were presented for ensur-
ing sustainability. Turk considered that a familiar one was
a funded piece of software where an external agency pro-
vided funds to a group who are not necessarily exclusively

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 4	of	31	

working on and developing the software, keeps it going,
and provides it to the scientific community. The model
of productized software, in which a piece of software has
grown to the point that research groups or people are
willing to support it with some amount of funding, for
instance, a subscription to use cloud services that deploy
a piece of software, or purchase of a piece of software. A
final model Turk felt conflicted about is a volunteer model
that is traditional old-school—not modern-day open
source—development.

Turk discussed whether productizing scientific soft-
ware was synonymous with being sustainable and self-
sufficient. He thought it was not necessarily the case and
furthermore, it could lead to a divergence of interests
between users and developers.

Turk reminded the audience that the volunteer model
means unpaid labor. On this note, he recommended Ashe
Dryden’s blog post on the ethics of unpaid labor and the
open source software community9. Oftentimes, a person
funded to work full time on a scientific project can spend
a small amount of time for working on a piece of soft-
ware necessary for that project. However, researchers’
abilities to participate in that volunteer community are
not always the same and may not always be aligned with
their research projects. From Turk’s experience, we can-
not always rely on unpaid labor and volunteer time to sus-
tain a piece of software—this came down to the notions
of the top-down and the bottom-up approaches, i.e., the
funded versus the grassroots. However, Turk pointed out
that bottom-up, volunteer-driven projects can be just as
large-scale as a top-down software development project.

Turk said that sustaining scientific software really meant
to him conducting scientific inquiries, often by some spe-
cific software, and sustaining the people we care about,
our careers, and the future of our fields. According to Turk,
we all have an invested stake in sustaining scientific soft-
ware. Hence, having “sustained” projects can suffocate new
projects, so we need to make sure we don’t cause novel
ideas and packages to suffer at the hands of the status quo.

Turk talked about possible reasons why we want to sus-
tain scientific software: devotion to science and interests
in pursuing the next stage of research; fun and creative
thrill in writing codes and papers; usefulness with meas-
urable impacts, for example, LINPACK and HDF groups
providing data storage to satellites, which goes beyond
usefulness to necessity. Lastly, Turk presented his wishlist
of questions to be answered in the future:

• How do we ship a product on time when dealing with
a mix of funding models and motivations especially
when we rely on volunteers?

• How do we know when it is time to end some software
and move on? For example, should we stop sustaining
Python and switch to Julia and Javascript?

• How can productized software balance its future versus
its past, or the emerging needs of the customers versus
the existing needs of the development community?

• How can we help avoid burnout and retain the joy in
the communities?

• How can we reduce systemic bias, which goes back to
Dryden’s blog post especially on how ethics of unpaid
labor disproportionately affect underrepresented
communities?

(4) Lightning Talks
After the keynote, WSSSPE3 continued with lightning
talks. These short talks were intended to give an opportu-
nity for attendees to quickly highlight an important issue
or a potential solution.

(1) Benjamin Tovar and Douglas Thain: Freedom
vs. Stability: Facilitating Research Training
While Supporting Scientific Research. Benjamin
Tovar presented a case study of the Cooperative
Computing Lab (CCL)10 at the University of Notre
Dame, which is a small group of individuals whose
main tasks are collaborating with people that have
large-scale computing problems, operating various
parallel computer systems, conducting computer
science research, and developing open source
software. One of the main challenges they face is
finding a balance between flexibility/training and
stability/quality. Their current solution for ensur-
ing the latter was to add a software engineer (the
presenter) to the existing team of faculty and stu-
dents, who now also serves as a “spring” between
flexibility and stability.

(2) Birgit Penzenstadler, Colin Venters, Christoph
Becker, Stefanie Betz, Ruzanna Chitchyan, Letí-
cia Duboc, Steve Easterbrook, Guillermo Rodri-
guez-Navas, and Norbert Seyff: Manifesting the
Ghost of the Future: Sustainability. The concept
of sustainability has become a topic of interest in
the field of computing, which is evidenced by the
increase in the number of events that focus on
the topic. Nevertheless, it is not well understood
yet. Birgit Penzenstadler argued that we often
define sustainability too narrowly. Instead, sustain-
ability at its heart is a systemic concept and must
be viewed from a range of different dimensions
including environmental, economic, individual,
social, and technical. She introduced the Karlsk-
rona Manifesto on Software Design [6], which dis-
tills knowledge from a broad range of related work
on the topic of sustainability into a set of (mis-)
perceptions and principles. The manifesto does not
proclaim that there is an easy, one-size-fits-all solu-
tion around the corner, but rather points out that
sustainability is a “wicked problem” and is often
misunderstood. Due to these misperceptions, even
though sustainability’s importance is increasingly
recognized, many software systems are unsustain-
able. Even more alarming is that most software
systems’ broader impacts on sustainability are
unknown. To change this, the Karlskrona Manifesto
proposes nine principles and commitments. These
commitments are not dogmatic laws, but rather
commitments to rethink, to move beyond the silo

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 5	of	31	

mentality, and to analyze in more depth. As such,
they do not restrict, but rather open up a space for
discussion.

(3) Abani Patra, Hossein Aghakhani, Nikolay Sima-
kov, Matthew Jones, and Tevfik Kosar: Integrat-
ing New Functionality Using Smart Interfaces to
Improve Productivity of Legacy Tools. Abani Patra
presented an example of how the community using
Titan2D, a geoflow simulation software, increased
the productivity of their tools by improving both
code and data layout [7]. The main obstacles in
this change were the non-existence of a common
version control system for the source code, cou-
pled with multiple versions of the same code base,
the fixed format of input files, that many input
values were set as compilation flags, and that the
internal data layout was not suitable for modern
technologies (e.g., vectorization, accelerators). The
approaches of the Titan2D developers included
reinforcing the code structure using multiple lay-
ers of Python and C++ interfaces, and a redesign
of the data layout to be more suitable for modern
CPUs and accelerators.

(4) Abigail Cabunoc Mayes, Bill Mills, Arliss Col-
lins, and Kaitlin Thaney: Collaborative Software
Development as Sustainable Software: Lessons
from Open Source. Abigail Cabunoc Mayes com-
bined two properties of open source that, together,
create a suitable habitat for sustainable software.
The first of the two properties, public, does not only
mean public code. It also includes public discus-
sions, a public process of including contributions,
and an open license. The second property, partici-
patory, stresses the importance of reaching out to
the community and helping potential new mem-
bers by providing better documentation and learn-
ing experiences, like code review and examples of
good first bug reports. Together, Abigail concluded,
these two properties not only lead to higher qual-
ity, reusability, and ease of understanding, but also
eventually, to sustainability.

(5) Louise Kellogg and Lorraine Hwang: Advanc-
ing Earth Science through Best Practices in Open
Source Software: Computational Infrastructure
for Geodynamics. Lorraine Hwang presented expe-
riences with the Computational Infrastructure for
Geodynamics (CIG)11, a community software with a
worldwide user base. Like others, their main goals
include high usability, sustainability, and reproduc-
ibility. As a means to achieve these goals, various
communication channels have been developed,
such as mailing lists, wikis, workshops, hackathons,
tutorials, and webinars. In order to contribute to
the infrastructure, codes must adhere to specified
minimum standards with the desire that all codes
are working toward target standards. These include,
e.g., the use of version control, certain coding
styles, the presence and nature of code tests and
documentation, and certain user workflows.

(6) Lorraine Hwang, Joe Dumit, Alison Fish, Lou-
ise Kellogg, Mackenzie Smith, and Laura Soito:
Software Attribution for Geoscience Applica-
tions in the Computational Infrastructure for
Geodynamics. In a second talk, Lorraine Hwang
mentioned a variety of ways to cite efforts within
the SAGA framework12, including science papers,
code papers, user manuals, and the CIG website.
An analysis of the resulting citations showed that
80% of papers that use CIG codes mention the code
name, and about the same number includes a cita-
tion. Only about 20% acknowledge CIG. Within the
same sample of papers, about one fifth use an URL
to cite codes (including non-CIG codes), and only
about one eighth specify the version used. Com-
pared to other codes, CIG seems to be much better
cited. In part, this is attributed to the fact that CIG
requires that donated software provide a citable
paper specified in the User Manual. The project is
working on tools and methods to generate attribu-
tion information automatically.

(7) Mike Hildreth, Jarek Nabrzyski, Da Huo, Peter
Ivie, Haiyan Meng, Douglas Thain, and Charles
Vardeman: Data And Software Preservation
for Open Science (DASPOS). DASPOS13 is an NSF-
funded multi-disciplinary effort, located at Notre
Dame and Chicago, that links the high energy
physics effort to other disciplines such as biology,
astrophysics, and digital curation. It includes physi-
cists, digital librarians, as well as computer scien-
tists, and aims to achieve some commonality across
disciplines. Examples are meta-data descriptions of
archived data, computational descriptions, descrip-
tions of how data was processed, questions such
as whether computation replication can be auto-
mated, and what the impact of access policies on
the preservation infrastructure is. One of the prod-
ucts of this effort is a suite of tools that deals with
this preservation [8, 9, 10, 11], and the questions
was posed whether that software itself is sustaina-
ble. Points that were brought up included the need
for a user community depending on a given soft-
ware, and the need to provide added value for its
users. An important method to achieve this was to
work with the user community from the start, and
to budget that way. For the specific example of the
preservation software, this means that besides add-
ing value to the community, it needs to be transpar-
ent to their workflows, i.e., not requiring additional
effort to preserve “research objects.”

(8) James Hetherington, Jonathan Cooper, Robert
Haines, Simon Hettrick, James Spencer, Mark
Stillwell, Mike Croucher, Christopher Woods,
and Susheel Varma: An update from UK Research
Software Engineers. James Hetherington started
by listing some of the problems research software
faces, which include poor standard of verification
and low levels of reuse. For a long time, technical
solutions to such technical problems were focus of

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 6	of	31	

the eResearch community, including research soft-
ware distributions, grids, middleware and work-
flows. Some limited adoption can be seen today
in research communities, but the main problems
have not been solved to a sufficient level. Heth-
erington hypothesized that instead of technical
solutions, social innovation is needed: a new role
in the academic system focused on research soft-
ware that combines the best parts of a craftsperson
and a scholar [12, 13]. However, social innovation
in centuries-old institutions is hard. Alternatives to
such a new role would have to include rewards for
good research software, recognition of software as
academic output, and rejecting submissions based
on irreproducible computational results. Some
advantages of research software engineering (RSE)
groups include the possibility of training in repro-
ducible computational research, providing collabo-
rations for researchers who do not want to serve as
programmers, and creating synergies with research
computing platforms. The success of such a group
would be measured by the output and quality of
the research software. Members could be part of
Research Computing or faculty. They would not
be independent researchers, but would have to
have a research background. An attempt to form
a community of RSE groups within the UK has
been underway for several years, including funding
from the UK Research Council. An open question
is whether this approach can be adopted in other
countries, including the USA.

(9) Dan Gunter, Sarah Poon, and Lavanya Ram-
akrishnan: Bringing the User into Building
Sustainable Software for Science. Dan Gunter’s
main question was, “What is needed to develop
sustainable software?”. Beyond the usual suspects
of funding, proficient developers, good design,
and software engineering practices, Dan placed
the users. He explained this using a traditional
software-development model starting from gather-
ing requirements, and reaching release through a
design, development, and testing phase. The main
deficiency with this approach was pointed out to
be the too-late interaction with users. Instead, an
alternative approach was proposed that, at first,
skips the development phase and repeatedly goes
through requirement gathering, design and user
interaction/learning phases, and only eventually
starts development once an agreement is reached,
leading to an increased user satisfaction, higher
adoption, and eventually to sustained software.

(10) Dan Gunter, Adam Arkin, Rick Stevens, Rob-
ert Cottingham, Sergei Maslov, and the KBase
Project: Challenges of a Sustainable Software
Platform for Predictive Biology: Lessons Learned
on the KBase Project. Dan Gunter presented expe-
riences and lessons learned as part of KBase14, an
open software and data platform for addressing
the grand challenge of systems biology: predicting
and designing biological function. KBase is a uni-

fied system that integrates data and analytical tools
for comparative functional genomics of microbes,
plants, and their communities. However, it is also
a collaborative environment for sharing methods
and results, and placing those results in the con-
text of knowledge in the field. Being a large, multi-
institutional project, one of the big challenges is
to agree on standards to enable a single, maintain-
able system. Working in isolation does not work
(anymore) within this field, and the community in
the field also does not have standards for software
engineering. This is contrasted to computer science
research, where software engineering standards
shorten design cycles, leading to more time for
highly rewarded activities like publishing, perfor-
mance studies, graduating students, or protecting
ideas before publication. Instead of this more tra-
ditional approach, KBase uses a variation on the
“Scrum” methodology. After picking projects and
team members, four to five teams work on projects
for about two weeks before a one-week evaluation
by the executive committee. Based on their assess-
ment new teams and projects might be chosen
before iteratively restarting the “agile” development
cycle. This process is intentionally open and docu-
mented.

(11) Yolanda Gil, Chris Duffy, Chris Mattmann,
Erin Robinson, and Karan Venayagamoorthy:
The Geoscience Paper of the Future Initiative:
Training Scientists in Best Practices of Software
Sharing. Erin Robinson presented an approach to
overcome some hurdles in scientific publishing:
disconnects among experimental data, research
software, and publications. A current effort in
the Geosciences is the “Geoscience Paper of the
Future15,” which includes four elements [14]. First,
it forms a modern paper including text, data, and
pointers to supplementary materials. Second, it is
reproducible, including data processing, workflow,
and visualization tools. Third, it is part of open
science, which includes being publicly available
under open licenses, and providing meta-data. Last
but not least, it uses digital scholarship elements
like persistent identifiers for software, data, and
authors, and it cites both data and software. Onto-
Soft is a tool for helping with this effort, providing
software stewardship for the Geosciences. As part
of this initiative, a special issue of a journal in Geo-
science areas is planned to include only Geoscience
papers of the future, with submissions open until
the end of 2015 [15]. In addition, training sessions
are provided to geoscientists to learn best practices
in software and data sharing, provenance docu-
mentation, and scholarly publication.

(12) Neil Chue Hong: Building a Scientific Software
Accreditation Framework. Neil Chue Hong pre-
sented a proposal to build a scientific software
accreditation framework. One of the aims of such
a framework would be to measure how “good”
a given piece of software is, and to evaluate

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 7	of	31	

how this can be effectively measured in the first
place. This can be compared to the effort of the
standardized, easy to read, and understandable
nutritional labeling of food, which only contain
a small set of categories. However, such a frame-
work for software would be more difficult due to
different existing community norms. The chal-
lenges such a framework faces include that many
measurements are subjective, that many metrics
are too costly, and that self-assessment needs
to be encouraged. Possible categories would
include availability, usability, transferability,
among others. Such a framework could enable
both improvement of specific software, as well
as comparisons of similar software. An accredita-
tion by such a framework could then be part of
software management plans, ensuring that soft-
ware is accessible and reusable throughout the
proposed project and beyond.

(13) Jeffrey Carver: On the Need for Software Engi-
neering Support for Sustainable Scientific Soft-
ware. Carver argued that for scientific software to
be truly sustainable, there is a need for develop-
ers to use appropriate software engineering prac-
tices. His experience interacting with scientific
teams indicates that choosing and tailoring these
practices is not a trivial exercise [16, 17, 18, 19].
There is a general culture clash between software
engineering and science that hinders our ability to
communicate and choose appropriate methods.
In addition, many experienced scientific software
developers appear to be unaware of software engi-
neering practices that may be beneficial to them.
The most appropriate software engineering prac-
tices are those that are lightweight, properly tai-
lored, and focus on the key software development
problems faced by scientists. In order to increase
the use of software engineering in science, we
need more documented success stories. These suc-
cesses need to be socialized within the scientific
community through workshops like the Software
Engineering for Science workshop series16 and the
new Software Engineering track in Computing in
Science and Engineering magazine.

(14) Matthias Bussonnier: User Data Collection in
Open Source. This talk highlighted an attempt to
solve the common problem for open source devel-
opment: it is difficult to collect information about
how many people use particular software, how
often, which version, which parts of the software,
or on which operating system. Current solutions
include surveys, but these have high uncertainties.
A different approach is based on automatic “call-
backs” that collect these information at runtime
and send it to a central place for analysis. Problems
with this approach include obtaining agreement
from the user, legal issues, increased maintenance
(of servers), ethical questions, and also the lack of
a common infrastructure. Some of these problems
are of a social nature and have to be solved as such,

but the last problem (a missing common infrastruc-
ture) is attacked by the sempervirens project [20],
which is developing common APIs and a library
implementation for common, repeating tasks such
as obtaining user consent. Results are uploaded not
directly to project servers, but to neutral third par-
ties that only publish aggregated statistics to pro-
jects.

(15) Alice Allen: We’re giving away the store! (Mer-
chandise not included). Alice Allen described the
Astrophysics Source Code Library17, an increasingly
used way to obtain a unique ID for astrophysics
software that is indexed by indexing services and
can be cited [21]. ASCL offers clones of existing
infrastructure, provides server space and comput-
ing resources, shares innovations, and permits
moves elsewhere. Users provide a domain name,
then control and configure their site and use it as
intended, gather their codes as they wish, share
innovations, and protect the provided computing
environment.

(16) Stan Ahalt, Bruce Berriman, Maxine Brown,
Jeffrey Carver, Neil Chue Hong, Allison Fish,
Ray Idaszak, Greg Newman, Dhabaleswar
Panda, Abani Patra, Elbridge Gerry Puckett,
Chris Roland, Douglas Thain, Selcuk Uluagac,
and Bo Zhang: Scientific Software Success:
Developing Metrics While Developing Com-
munity. The effort behind this talk given by Ray
Idaszak started from a breakout group at an NSF
SI2 workshop in 2015, and centers around build-
ing a framework for creating metrics for scientific
software [22]. This framework would improve
both the metrics and the software it evaluates,
and could also serve as a tool for building a com-
munity around the idea. With especially the last-
mentioned idea (building a community) in mind,
a software “peer review group” would be created,
representing stakeholders who will self-review
software created by their respective communities,
and will concurrently develop metrics. The whole
project should be community-governed, without a
single institution overseeing the activities or infra-
structure, with the hope to evolving community-
generated and adopted standards. The generation
of metrics would be tied to the actual evaluation
of software, creating an incentive by improving
the evaluated software itself during this process.
The framework code would provide infrastructure
for the creation of metrics and evaluation, and
forums for generation of software success metrics.
It would also support code reviews of the evalu-
ated software. An open question is whether it is
possible to fit the resulting metrics in a common
template. So far, this is still in a design phase, with
a white paper at the 2015 CSESSP workshop and
this talk, but the WSSSPE workshops are seen as
a forum for the community to assemble and act,
and is planned to be used also in the future to
build this community and framework.

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 8	of	31	

(5) Working Groups: Summaries
After the keynote and lightning talks, the workshop facil-
itators led an exercise to create working groups for the
rest of the meeting. The attendees first suggested addi-
tional topics beyond those in the call for participation
(as listed in §2). One topic that was introduced at this
point was “Building Sustainable User Communities for
Scientific Software.” The full set of topics was then placed
on flipchart-sized pieces of paper around the walls, and
the attendees voted on which topics they were strongly
interested in working on at WSSSPE3, and which topics
they were generally interested in contributing to, but not
as strongly. This led to some topics being taken out of
the mix for the rest of the workshop, since not enough
people wanted to contribute to them to lead to a use-
ful discussion. Additionally, some topics were combined
by the participants who felt they were closely linked and
that a group could address multiple of them in a single
discussion.

After this, the attendees broke up into small working
groups to discuss the remaining topics during most of the
remaining 1 1/2 days. A high-level summary of each topic
and group’s work can be found in the subsections of this
section, and for all but one group, more detailed notes on
each group’s discussions can be found in §6.

Midway through the first afternoon and between the
two days, each group had a chance to talk about what
progress they had made. As discussed below (in §5.4),
the group that formed to discuss Legacy Software dis-
solved after the first session as group members left to
join other groups. In addition, in the morning of the sec-
ond day, a small set of reviewers/advisors (external to the
groups but chosen by the group members) visited each
group to listen to what they group was planning and to
provide feedback.

5.1 White paper/journal paper about best practices in
developing sustainable software
Reviewing multiple past articles and talks at different
meetings like WSSSPEx [2, 4, 23, 24, 25] and analyzing
and promoting sustainable scientific software makes it
clear that there are several common and recurring ideas
that underpin success in developing sustainable software.
However, outside of a small community, this knowledge is
not widely shared. This is especially true for the large com-
munity of scientists who generate most of the software
used by scientists but are not primarily software develop-
ers. In this scenario, a clear and precise exposition of these
best practices collected from many sources and open col-
laboration among all in the community in a single source
(e.g., journal paper, tutorial) that can be widely dissemi-
nated is necessary and likely to be very valuable.

5.1.1 Fit with related activities
The creation of such a “best practices” document will
build upon the range of activities and topics discussed
at WSSSPE3 and associated prior meetings. This working
group will attempt to distill the emerging body of knowl-
edge into this document. The large number of articles from
the NSF-funded SI2 projects (SSE and SSI), “lightning talks,”

“white papers,” and reports from different workshops have
created a large if somewhat diffuse source for this report.

5.1.2 Discussion
Core questions that will need to be explored are in repro-
ducibility, reliability, usability, extensibility, knowledge
management, as well as continuity (transitions between
people). Answers to these questions will guide the group
to learn how a software tool becomes part of the core
workflow of well-identified users (stakeholders) relating
to tool success and hence sustainability. Ideas that may
need to be explored include:

• Requirements engineering to create tools with imme-
diate uptake;

• When should software “die”?
• Catering to disruptive developments in environment

(e.g., new hardware, new methodology);
• Dimensions of sustainability: economic, technical,

environmental and obsolescence.

Sustainability requires community participation in code
development and/or a wide adoption of software. The
larger the community base is using a piece of software,
the better are the funding possibilities and thus also the
sustainability options. Additionally developer commit-
ment to an application is essential and experience shows
that software packages with an evangelist imposing strong
inspiration and discipline are more likely to achieve sus-
tainability. While a single person can push sustainability
to a certain level, open source software also needs sus-
tained commitment from the developer community. Such
sustained commitments include diverse tasks and roles,
which can be fulfilled by diverse developers with differ-
ent knowledge levels. Besides developing software and
appropriate software management with measures for
extensibility and scalability of the software, active (exper-
tise) support for users via a user forum with a quick turna-
round is crucial. The barrier to entry for the community
as users as well as developers has to be as low as possible.

For additional information about the discussion, see
Section 6.1.

5.1.3 Plans
The creation of a document on best practices needs a large
and diverse community involved. The group has enlisted
over ten contributors from the attendees at the WSSSPE3
and those on the mailing list. The primary mechanism
for developing this document will be to examine and
analyze the success of several well known community sci-
entific software and organizations supporting scientific
software. The group will attempt then to abstract general
principles and best practices. Some of the tools identified
for such analysis are the general purpose PETSc toolkit
for linear system solution, NWChem for computational
chemistry and the CIG (Computational Infrastructure for
Geodynamics) organization dedicated to supporting an
ensemble of related tools for the geodynamics commu-
nity. The group also established a timeline and a rough
outline (see Section 6.1) for the report.

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 9	of	31	

Timeline:
• 28 Dec: Introduction and scope finished
• 06 Jan: Sections assigned
• 31 Jan: Analyzing funding possibilities for survey
• 31 Jan: First versions of section
• 15 Feb: Distribution to WSSSPE community
• 31 Mar: Final version of white paper
• 30 Apr: Submission of peer-reviewed paper?

5.1.4 Landing Page
The landing page with instructions, timeline and the white
paper is here: https://drive.google.com/drive/folders/0B
7KZv1TRi06fbnFkZjQ0ZEJKckk. Discussions can be also
continued in https://github.com/WSSSPE/meetings/
issues/42.

5.2 Funding Research Programmer Expertise
Research Software Engineers (RSEs)—those who contrib-
ute to science and scholarship through software develop-
ment—are an important part of the team needed to deliver
21st century research. However, existing academic struc-
tures and systems of funding do not effectively fund and
sustain these skills. The resulting high levels of turnover
and inappropriate incentives are significant contributing
factors to low levels of reliability and readability observed
in scientific software. Moreover, the absence of skilled and
experienced developers retards progress in key projects,
and at times causes important projects to fail completely.

Effective development of software for advanced
research requires that researchers work closely with sci-
entific software developers who understand the research
domain sufficiently to build meaningful software at a
reasonable pace. This requires a collaborative approach—
where developers who are fully engaged or invested in the
research context are co-developing software with domain
academics.

5.2.1 Fit with related activities
The solution this group envisions entails creating an envi-
ronment where software developers are a stable part of a
research team. Such an environment mitigates the risk of
losing a key developer at a critical moment in a projects
lifetime, and provides the benefits of building a store of
institutional knowledge about specific projects as well
as about software development for today’s research. The
group’s vision is to find a way to promote a university/
research institute environment where software develop-
ers are stable components of research project teams.

One strategy to promote stability is implementing a
mechanism for developers to obtain academic credit for
software development work (see §5.8.) With such a mech-
anism in place, traditional academic funding models and
career tracks could properly sustain individuals for whom
software development is their primary contribution to
research. A contributing factor to the problem with the
current academic reward system is the devastating effect
on an academic publication record resulting from time
in industry; such postings often develop exactly the skills
that research software engineers need, yet returns to uni-
versity positions following an industry role are penalized

by the current structures. Retention of senior developers
is hard, because these people are high in demand by the
economy. However, people who have a PhD in science and
enter industry, may desire to return for diverse reasons,
and should be welcomed back.

While developing new mechanisms in the current aca-
demic reward system is a worthy aspirational goal, such a
dramatic change in this structure does not seem likely in a
time scale relevant to this working group. Accordingly, the
working group sought alternative solutions that may be
achievable within the context of existing academic struc-
tures. The group felt that developing dedicated research
software engineering roles within the university and
finding stable funding for those individuals is the most
promising mechanism for creating a stable software devel-
opment staff.

Measures of impact and success for research program-
ming groups, as well as for individual research software
engineers, will be required in order to make the case to
the university for continued funding. Research software
engineers will hopefully not be measured by publica-
tions, but by other metrics. Middle-author publications
are common for RSEs. Most RSEs welcome co-author-
ship on papers when the PIs think that the contribution
deserves it.

5.2.2 Discussion
It is hard for an individual PI in a university or college
to support dedicated research software engineering
resources, as the need and funding for these activities are
intermittent within a research cycle. To sustain this capac-
ity, therefore, it is necessary to aggregate this work across
multiple research groups.

One solution is to fund dedicated software engineer-
ing roles for major research software projects at national
laboratories or other non-educational institutions. This
solution is in place and working well for many well-used
scientific codebases. However, this strategy has limited
application, as much of the body of software is created
and maintained in research universities. Therefore, the
group argues that research institutions should develop
hybrid academic-technical tracks for this capacity, where
employees in this track work with more than one PI, rather
than the traditional RA role within a single group. This
could be coordinated centrally, as a core facility, perhaps
within research computing organizations which have
traditionally supported university cyberinfrastructure,
library organizations, or research offices. Alternatively,
these groups could be organizationally closer to research
groups, sitting within academic departments. The most
effective model will vary from institution to institution,
but the mandate and ways of working should be similar.

Having convinced themselves that this would be a posi-
tive innovation, the group members were then faced with
the specific question of how to fund the initiation of this
activity. A self-sustaining research software group will sup-
port itself through collaborations with PIs in the normal
grant process, with PIs choosing to fund some amount of
research software engineering effort through grants in the
usual way. However, to bootstrap such a function to a level

https://drive.google.com/drive/folders/0B7KZv1TRi06fbnFkZjQ0ZEJKckk
https://drive.google.com/drive/folders/0B7KZv1TRi06fbnFkZjQ0ZEJKckk
https://github.com/WSSSPE/meetings/issues/42
https://github.com/WSSSPE/meetings/issues/42

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 10	of	31	

where it has sufficient reputation and client base to be
self-sustaining will generally require seed investment.

This might come from universities themselves (this
was the model that led to the creation of the group in
University College London), but more likely, seed fund-
ing needs to come from research councils or other fund-
ing bodies (as with the Research Software Engineering
Fellowship provided by the UK Engineering and Physical
Sciences Research Council). The group therefore recom-
mends that funding organizations consider how they
might provide such seed funding.

Success, appropriately measured, will help make the
case to such funding bodies for further investment. One
might expect that metrics such as improved productivity,
software adoption rates, and grant success rates would be
sufficient arguments in favor of such a model. However,
useful measurement of code cleanliness, and the result-
ing productivity gains, is an unsolved problem in empiri-
cal software engineering. To measure “what did not go
wrong” because of an intervention is particularly hard.

The working group finally noted that the institutional
case for such groups is made easier by having success-
ful examples to point to. In the UK, a collective effort to
identify the research software engineering community,
with individuals clearly stating “I am a research software
engineer,” has been important to the campaign. It will be
useful to the global effort to similarly identify emerging
research software organizations, and also, importantly, to
identify longer-running research software groups, which
have in some cases had a long running sui-generis exist-
ence, but which now can be identified as part of a wider
solution. There remains the problem of how to “sell” the
value of this investment to investigators within a uni-
versity. This is an issue best addressed by the individual
organizations that embark on the plan.

For more details on the discussion, see Section 6.2.

5.2.3 Plans
The first step in moving this strategy forward is to gather
a list of groups that selfidentify as research software engi-
neering groups, and to reach out to other organizations to
see if there may be a widespread community of RSEs who
do not identify themselves as such at this time. This work-
ing group will collect information about the organizational
models under which these groups function, and how they
are funded. For example, how many research universities
currently fund people in the RSE track, whether they bear
the RSE moniker or not. Are these developers paid by the
university or through a program supported by research
grants/individual PIs? How did they bootstrap the devel-
oper track to get this started? How successful is the uni-
versity in getting investigators to pay for fractional RSEs?
The group will author a report describing their findings,
should funding be available to conduct the investigation.

5.2.4 Landing Page
A list of known UK research software engineering
groups is available at http://www.rse.ac.uk/groups,
and a list for the rest of the world is at http://www.rse.

ac.uk/international. To add another group to the list,
please make a pull request as requested on either of
these pages.

5.3 Transition Pathways to Sustainable Software:
Industry & Academic Collaboration
Most scientific software is produced as a part of grant-
funded research projects typically sponsored by federal
governments. If we are interested in the sustainability
of scientific software, then we need to understand what
exactly happens when that sponsorship ends. More than
likely, the project and its resulting software will need to
undergo some kind of transition in funding and conse-
quently governance.

At WSSSPE3, this working group was interested in bet-
ter understanding successful pathways for scientific soft-
ware to “transition” from grant-funded research projects
to industry sponsorship. (This may be an initially awkward
phrase—some software projects will begin their life being
sponsored by industry, or result in collaboration between
industry and academia. In such cases, there is still a need
to understand how IP and how maintenance of the soft-
ware is sustained over time.)

5.3.1 Fit with related activities
Most previous research and discussion of industry and
academic collaboration, sharing, and funding of research
software has focused on the impact of such arrangements.
Examples of these types of reports are:

• REF Impact Case Studies: http://impact.ref.ac.uk/
CaseStudies/

• Background of projects funded in the UK: http://gtr.
rcuk.ac.uk/

• Dowling Review from the UK: addresses com-
plexity of work between these two communi-
ties: http://www.raeng.org.uk/policy/dowling-
review

• Pathway to Impact – UK report: two pages of grant
proposals are asked to forecast what impact they
might have (including environmental, academic, eco-
nomic).

5.3.2 Discussion
Although sustainability transitions are often studied
under the broad umbrella of “technology transfer,” the
group believes there are likely to be a number of differ-
ent ways in which a pathway from initial production to
long-term maintenance and secure funding is achieved. In
short, industry sponsorship and/or direct participation is
an important aspect of sustaining scientific software, but
our current understanding of these transitions focuses
narrowly on commercial successes or failures of those
collaborations.

In looking at existing literature that addresses indus-
try transitions, many reports (such as those listed above)
focus on benefits that accrue to the private sector, or to
a government that originally sponsored the research pro-
ject. This literature does not address the impact that these

http://www.rse.ac.uk/groups
http://www.rse.ac.uk/international
http://www.rse.ac.uk/international
http://impact.ref.ac.uk/CaseStudies/
http://impact.ref.ac.uk/CaseStudies/
http://gtr.rcuk.ac.uk/
http://gtr.rcuk.ac.uk/
http://www.raeng.org.uk/policy/dowling-review
http://www.raeng.org.uk/policy/dowling-review

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 11	of	31	

transitions have on the accessibility or usability of the
software, or the impact that these transitions have on the
career of the researchers involved.

For more detail on the group’s discussion, see
Section 6.3.

5.3.3 Plans
Plans for carrying forward are currently unclear—this pro-
ject would require sustained attention and effort from the
group members, and at least some amount of funding in
order for those members to be involved for extended peri-
ods of time.

The broad goals that the group would like to
accomplish are:

(1) To complete a set of case studies which look at suc-
cessful and unsuccessful transitions between aca-
demic researchers and industry

(2) To create a generalizable framework, which might
allow for a broader study of different transition path-
ways (other than between academia and industry)

The main plan for the group going forward is the creation
of a white paper on the topic of sustainability transitions.

5.3.4 Landing Page
Transitions Pathways discussions can be posted at https://
github.com/WSSSPE/meetings/issues/46 or an email be
sent to Nic Weber18 to find out more about the group’s
efforts and how to participate.

5.4 Legacy Software
This group met only briefly, for one period on the first
day. They discussed that it is difficult to define legacy code
because there is so much stigma associated with the term.
At some point there will be more difficulty and resources
wasted trying to keep legacy software supported, but it
will eventually be too expensive compared to how much it
would be to just rebuild the software or kill it. Most of the
group members were not able to attend on the second day,
and those who were able to attend joined other groups.

5.5 Principles for Software Engineering Design for
Sustainable Software
Principles for software engineering form the basis of
methods, techniques, methodologies and tools [26].
However, there is often a mismatch between software
engineering theory and practice particularly in the fields
of computational science and engineering, which can lead
to the development of unsustainable software [27, 28].
Understanding and applying software engineering princi-
ples is essential in order to create and maintain sustain-
able software [29].

5.5.1 Fit with related activities
This group’s discussion focused on identifying existing
principles of software engineering design that could be
adopted by the computational science and engineering
communities.

5.5.2 Discussion
Software engineering principles form the foundation
of methods, techniques, methodologies, and tools.
Consisting of members from different backgrounds,
including quantum chemistry, epidemiology, com-
puter science, software engineering, and micros-
copy, this group discussed the principles of software
engineering design for sustainable software (starting
with principles from the Karlskrona Manifesto on
Sustainability Design [30], Tate [31], and the Software
Engineering Body of Knowledge (SWEBOK) [32]) and
their application in various domains including quan-
tum chemistry and epidemiology. The group examined
the principles and took a retrospective analysis of what
the developers did in practice against how the princi-
ples could have made a difference, and asked, what do
the principles mean for computational scientific and
engineering software, and how do the principles relate
to non-functional requirements? It appeared that the
sustainable software engineering principles should
be mapped to two core quality attributes that under-
pin technically sustainable software: extensibility, the
software’s ability to be extended and the effort level
required to implement the extension; and maintain-
ability: the effort required to locate and fix an error in
operational software.

For more information about the discussion, see
Section 6.4.

5.5.3 Plans
The next steps in this endeavor are to (1) Systematically
analyze a number of example systems from different sci-
entific domains with regards to the identified principles,
to (2) Identify the commonalities and gaps in applying
those principles to different scientific systems, and to (3)
Propose a set of guidelines on the principles and examine
how they exemplarily apply to scientific software systems.
Preliminary work will be carried out through undergradu-
ate or post-graduate student projects.

5.5.4 Landing Page
In the absence of a landing page, the Principles for Software
Engineering Design for Sustainable Software working
group requests an email be sent to Birgit Penzenstadler19

and Colin C. Venters20 to find out more about the group’s
efforts and how to participate.

5.6 Useful Metrics for Scientific Software
Metrics for scientific software are important for many pur-
poses, including tenure and promotion, scientific impact,
discovery, reducing duplication, serving as a basis for
potential industrial interest in adopting software, prior-
itizing development and support towards strategic objec-
tives, and making a case for new or continued funding.
However, there is no commonly-used standard for collect-
ing or presenting metrics, nor is it known if there is a com-
mon set of metrics for scientific software. It is imperative
that scientific software stakeholders understand that it is
useful to collect metrics.

https://github.com/WSSSPE/meetings/issues/46
https://github.com/WSSSPE/meetings/issues/46

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 12	of	31	

5.6.1 Fit with related activities
The group discussion focused on identifying exist-
ing frameworks and activities for scientific software
metrics. The group identified the following related
activities:

• Computational Infrastructure for Geodynamics: Soft-
ware Development Best Practices21

• WSSSPE3 Breakout Session: How can we measure the
impact of a piece of code on research, and its value to
the community?22

• 2015 NSF SI2 PI Workshop Breakout Session on Fram-
ing Success Metrics23

• 2015 NSF SI2 PI Workshop Breakout Session on Soft-
ware Metrics24

• NSF Workshop on Software and Data Citation Break-
out Group on Useful Metrics25

• U.K. Software Sustainability Institute Software Evalu-
ation Guide26

• U.K. Software Sustainability Institute Blog post: The
five stars of research software27

• Minimal information for reusable scientific software28

• EPSRC-funded Equipment Data Search Site29

• Canarie Research Software: Software to accelerate dis-
covery30

• Canarie Research Software: Research Software Plat-
form Registry31

• BlackDuck Open HUB32

• Innovation Policy Platform33

5.6.2 Discussion
The group discussion began by agreeing on the common
purpose of creating a set of guidance giving examples
of specific metrics for the success of scientific software
in use, why they were chosen, what they are useful to
measure, and any challenges and pitfalls; then publish
this as a white paper. The group discussed many ques-
tions related to useful metrics for scientific software
including addressing if there is a common set of metrics
that can be filtered in some way, can metrics be fit into
a common template, which metrics would be the most
useful for each stakeholder, which metrics are the most
helpful and how would we assess this, how are metrics
monitored, and many more. A more complete bulleted
list of these questions can be found in Section 6.5. Next,
a roadmap for how to proceed was discussed, includ-
ing creating a set of milestones and tasks. The idea was
put forth for the group to interact with the organizing
committee of the 2016 NSF Software Infrastructure for
Sustained Innovation (SI2) PI workshop in order to send
a software metrics survey to all SI2 and related awar-
dees as a targeted and relevant set of stakeholders. The
five solicitations for software elements released under
the NSF SI2 program all included metrics as a required
component with submitters requested to include “a list
of tangible metrics, with end user involvement, to be used
to measure the success of the software element developed,
. . . ”. These metrics are then reported as part of annual
reports to NSF by the projects. Although neither the

proposal text describing the metrics nor the reported
metric results are publicly available, there is reason to
believe that the community will be willing to provide
this information through a survey mechanism. This sur-
vey would be created by one of the student group mem-
bers. Similarly, it was suggested that a software metrics
survey be sent to the UK SFTF (Software For The Future,
led by the Engineering and Physical Sciences Research
Council) and TRDF (Tools and Resources Development
Fund, led by the Biotechnology and Biological Sciences
Research Council) software projects to ask them what
metrics would be useful to report. The remainder of the
discussion focused mainly on the creation of a white
paper on this topic. This resulted in a paper outline
and writing assignments with the goal of publish-
ing in venues including WSSSPE4, IEEE CiSE (Institute
of Electrical and Electronic Engineers Computing in
Science and Engineering magazine), or JORS (Journal of
Open Research Software). More information about the
group discussion is available in Section 6.5.

5.6.3 Plans
The main plan for the group going forward is the creation
of a white paper on the topic of useful metrics for scientific
software. The authoring of this white paper would happen
in parallel with the creation of a survey by the group with
the survey results to be incorporated in the white paper. The
timeline for completion of the white paper is approximately
one year targeting venues discussed in the previous section.

5.6.4 Landing Page
In lieu of a landing page, the Useful Metrics for Scientific
Software working group requests an email be sent to
Gabrielle Allen34 to find out more about the group’s
efforts and how to participate.

5.7 Training
This group explored a rapidly growing array of training that
is seen to contribute to sustainable software. The offerings
are diverse, providing training that is more or less directly
relevant to sustainable software. While research institu-
tions support professional development for research staff,
the skills taught which might impact on sustainable soft-
ware are limited at best, often lacking a clear and coherent
development pathway. Bringing together those involved in
leading relevant initiatives on a regular basis could helpfully
coordinate this growing array of training opportunities.

5.7.1 Fit with related activities
Three existing venues for discussion of related events are
identified:

• Working towards Sustainable Software for Science:
Practice and Experiences (WSSSPE) workshops [33]

• International Workshop on Software Engineering for
High Performance Computing in Computational Sci-
ence and Engineering (SEHPCCSE) [34]

• Workshop on Software Engineering for Sustainable
Systems [35]

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 13	of	31	

5.7.2 Discussion
Some next steps were identified to quickly test whether
there is interest in establishing a community commit-
ted to increasing the degree of coordination across train-
ing projects. See Section 6.6 for more details about the
discussion.

5.7.3 Plans
The main plan for the group is to convene a discussion
to explore bringing together regular meetings of those
involved in leading relevant training projects.

5.7.4 Landing Page
The Training working group requests an email be sent to
Nick Jones35 to find out more about the group’s efforts
and how to participate.

5.8 Software Credit Working Group
Modern scientific and engineering research often relies
considerably on software, but currently no standard
mechanism exists for citing software or receiving credit for
developing software akin to receiving credit via citations
for writing papers. Ensuring that developers of such sci-
entific software receive credit for their efforts will encour-
age additional creation and maintenance. Standardizing
software citations offers one route to establishing such a
citation and credit mechanism. Software is currently eligi-
ble for DOI assignment, but DOI metadata fields are not
well tuned for software compared to publications. Some
software providers apply for DOIs but it is still not widely
adopted. Also, there is no mechanism to cite software
dependencies within software in the same way papers cite
supporting prior work.

5.8.1 Fit with related activities
Publishing Software Working Group (§5.9): publishing a
software paper offers one existing mechanism for receiv-
ing credit, and further developing new publishing con-
cepts for software will strengthen our activities.

A number of groups external to WSSSPE (although with
some overlapping members) are also focused on aspects of
software credit, including the FORCE11 Software Citation
Working Group (see plans for coordination below). In addi-
tion, a Software Credit workshop36 convened in London
on October 19, following the conclusion of WSSSPE3. See
Section 6.7 for more detailed discussion of related activities.

5.8.2 Discussion
The group discussed a number of topics related to soft-
ware credit, including a contributorship taxonomy, soft-
ware citation metadata, standards for citing software in
publications, and increasing the value of software in aca-
demic promotion and tenure reviews. Although initial
discussions both prior to and during WSSSPE3 focused
on contribution taxonomy and dividing credit, discussing
as an example the Entertainment Identifier Registry [36]
used in the entertainment industry, the group decided to
prioritize software citation. This decision was motivated
by the idea that standardizing citations for software would

introduce some initial credit for developers, and later the
quantification of credit could be refined based on con-
cepts such as transitive credit [37, 38].

The majority of the remaining discussion focused on
standardizing (1) the metadata necessary for software to
be cited and (2) the mechanism for citing software in pub-
lications. Moreover, discussions also oriented around the
indexing of software citations necessary for establishing a
software citation network either integrated with the exist-
ing paper citation ecosystem or complementary to it. See
Section 6.7 for a more detailed summary of the working
group’s discussion on these topics.

5.8.3 Plans
The group already merged with the FORCE11 Software
Citation Working Group (SCWG), and their efforts will focus
(over the next six to nine months) on developing a docu-
ment describing principles for software citation. Following
the publication of that document, the group will focus on
outreach to key groups (e.g., journals, publishers, indexers,
professional societies). Longer-term plans include working
with indexers to ensure that software citations are indexed
and pursuing an open/community indexer; these activities
may be organized by future FORCE11 working groups.

5.8.4 Landing Page
Since near-term efforts will be shifting to the FORCE11-
SCWG, interested readers should go to that group’s exist-
ing landing page37 and GitHub repository 38.

5.9 Publishing Software Working Group Discussion
This working group explored the value of executable
papers (papers whose content includes the code needed to
produce their own results), and other forms of publishing
which include dynamic electronic content. Transitioning
to this type of publication offers possibilities of address-
ing, or partially addressing, sustainability concerns such as
reproducibility, software credit, and best practices.

5.9.1 Fit with related activities
• Reproducibility: Part of the purpose of these execut-

able paper venues is to (at least partially) address the
reproducibility issue by making papers recompute
their own results.

• Software Credit (§5.8): Since these forms of pub-
lishing must make their sources explicit in order to
execute, they should be easier to trace even if appro-
priately worded credit for software is not provided. In
addition, they make it possible to provide or define
additional metadata to make the tracing of credit
clearer. Finally, attributions could be added to cita-
tions to identify whether a paper extends a result,
verifies it, contradicts it, etc.

• Best Practices (§5.1): Because an executable paper
showcases the code, and the code itself is subject to
the review process, authors are more likely to pay
attention to coding practices. In addition, because the
paper must explain what the code does, better docu-
mentation is more likely to be achieved.

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 14	of	31	

5.9.2 Discussion
The group felt that the best way to encourage the use
of these new publishing concepts would be to create
and curate a list of publishing venues that support
them. The Software Sustainability Institute agreed to
host this list.

See Section 6.8 for more details about the discussion.

5.9.3 Plans
The plan is to create and curate a web page describing exe-
cutable papers, their value, and a list of what publishers
support them. The group expects the page to be available
in early January of 2016 on the Software Sustainability
Institute’s website.

5.9.4 Landing Page
The aforementioned page will be published on the
Software Sustainability Institute website: http://www.
software.ac.uk.

5.10 Building Sustainable User Communities for
Scientific Software
User communities are the lifeblood of sustainable
scientific software. The user community includes the
developers, both internal and external, of the soft-
ware; direct users of the software; other software
projects that depend on the software; and any other
groups that create or consume data that is specific to
the software. Together these groups provide both the
reason for sustaining the software and, collectively, the
requirements that drive its continued evolution and
improvement.

5.10.1 Fit with related activities
There are a number of activities already in progress
that are targeted at improving the user community
for open-source software, including Mozilla Science’s
“Working Open Project Guide” [39] and “UK Collaborative
Computational Projects” (CCP)39, or books such as “Art of
Community” by Jono Bacon [40].

5.10.2 Discussion
Discussion revolved around a few questions: what are the
benefits of having a “community” for software sustainabil-
ity; what practices and circumstances may lead to having
and maintaining a community; how can funding help or
hinder this process; and perhaps most importantly, how
can best practices be described and distilled into a docu-
ment that can help new projects.

All the group members agreed on a few points:
software must not only offer value, but there must
be some support for users; and funding can help pay
for that support, in addition to the usual funding for
software development. Openness is generally a virtue.
An evangelist, either in the form of a single person or
some domain-specific group of users, is often the key
factor.

Additional details on the group’s discussion can be
found in Section 6.9.

5.10.3 Plans
The most important next steps is a “Best Practice” docu-
ment, which would describe what successful projects with
engaged communities look like, how to replicate this type
of project, and look at the end of life of a community pro-
ject. Another next step would be better training to increase
recognition of need for science software projects to focus
on building and supporting their user communities.

5.10.4 Landing Page
This group does not have a landing page yet. Please send
requests to join and contribute by writing to both Dan
Gunter40 and Ethan Davis41.

(6) Working Groups: Details
This section captures detailed reports from each work-
ing group that made significant progress. Each subsec-
tion records the discussion of a group, as written by that
group at that time (in the first person and in the present/
future tense.) Thus, the subsections are records of what
the groups did and planned, as of the end of the WSSSPE3
workshop.

6.1 Best Practices Group Discussion
Sandra Gesing42 will serve as the point of contact for this
working group, and be responsible for ensuring timely
progress of the planned actions.

6.1.1 Group Members
• Abani Patra – University at Buffalo
• Sandra Gesing – University of Notre Dame
• Neil Chue Hong – Software Sustainability Institute
• Gregory Tucker – University of Colorado at Boulder
• Birgit Penzenstadler – California State University

Long Beach
• Abigail Cabunoc Mayes – Mozilla Foundation
• Frank Löffler – Louisiana State University
• Colin C. Venters – University of Huddersfield
• Lorraine Hwang – UC Davis
• Sou-Cheng Choi – NORC at the University of Chicago

& Illinois Institute of Technology
• Suresh Marru – Indiana University
• Don Middleton – NCAR
• Daniel S. Katz – University of Chicago & Argonne

National Laboratory
• Kyle Niemeyer – Oregon State University
• Jeffrey Carver – University of Alabama
• Dan Gunter – LBNL
• Alexander Konovalov – University of St Andrews
• Tom Crick – Cardiff Metropolitan University

6.1.2 Summary of Discussion
Core questions that will need to be explored are in reli-
ability, reproducibility, usability, extensibility, knowledge
management, and continuity (transitions between peo-
ple). Answers to these will guide us on how a software tool
becomes part of the core workflow of well identified users
(stakeholders) relating to tool success and hence sustain-
ability. Ideas that may need to be explored include:

http://www.software.ac.uk
http://www.software.ac.uk

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 15	of	31	

• Requirements engineering to create tools with imme-
diate uptake;

• When should software “die”?
• Catering to disruptive developments in environment,

e.g., new hardware, new methodology;
• Dimensions of sustainability: economic, technical,

environmental, and obsolescence.

Sustainability requires community participation in code
development and/or a wide adoption of software. The
larger the community base is using a piece of software,
the better are the funding possibilities and thus also the
sustainability options. Additionally, the developers’ com-
mitment to an application is essential and experience
shows that software packages with an evangelist impos-
ing strong inspiration and discipline are more likely to
achieve sustainability. While a single person can push
sustainability to a certain level, open source software also
needs sustained commitment from the developer com-
munity. Such sustained commitments include diverse
tasks and roles, which can be fulfilled by diverse develop-
ers with different knowledge levels. Besides developing
software and appropriate software management with
measures for extensibility and scalability of the software,
active (expertise) support for users via a user forum with
a quick turnaround is crucial. The barrier to entry for the
community as users as well as developers has to be as
low as possible.

6.1.3 Description of Opportunity, Challenges, and
Obstacles
There is an opportunity to collaborate on a white
paper, which will be revisited regularly for further
improvements, to enhance knowledge of the state of
best practices, resulting in a peer-reviewed paper. We
would like to reach a wide community by doing this.
But these are also the challenges and obstacles – to
get everyone to contribute to the paper and to reach
the community.

White Paper Outline

(1) Introduction and Scope of White Paper
(2) Related Work
(3) Case Studies

(a) PETSc
(b) NWChem
(c) CIG

(4) Community Related Practices
(a) Findings
(b) Recommendations

(5) Governance and management
(a) Findings
(b) Recommendations

(6) Funding Related
(a) Findings
(b) Recommendations

(7) Metrics for sustainability
(8) Tools
(9) Conclusions

6.1.4 Key Next Steps
The key next steps are to write an introduction, reach out to
the co-authors, and to agree on the scope of the white paper.

6.1.5 Plan for Future Organization
Sandra Gesing and Abani Patra are the main editors and
will organize the overall communication and the paper.
Sections will be assigned to diverse co-authors.

6.1.6 What Else is Needed?
At the moment we do not see any further requirements.

6.1.7 Key Milestones and Responsible Parties
• 28 Dec: Introduction and scope finished (Abani Patra/

Sandra Gesing)
• 06 Jan: Sections assigned (Abani Patra/Sandra Gesing)
• 31 Jan: Analyzing funding possibilities for survey
• 31 Jan: First version of each section
• 15 Feb: Distribution to the WSSSPE community
• 31 Mar: Final version of the white paper
• 30 Apr: Submission to a peer-reviewed journal?

6.1.8 Description of Funding Needed
We might need funding for a journal publication (open-
access options).

6.2 Funding Research Programmer Expertise Group
Discussion
James Hetherington43 will serve as the point of contact
for this working group, and be responsible for ensuring
timely progress of the planned actions.

6.2.1 Group Members
The group at WSSSPE:

• Don Middleton – National Center for Atmospheric
Research

• Joshua Greenberg – Alfred P. Sloan Foundation
• James Hetherington – University College London
• Lindsay Powers – The HDF Group
• Mark A. Miller – San Diego Supercomputer Center
• Dan Sellars – CANARIE

This was further enhanced by additional discussions at the
following GCE15 conference:

• Lorraine Hwang – UC Davis
• Simon Trigger – BioTeam, Inc.
• Nancy Wilkins-Diehr – San Diego Supercomputer

Center
• Alexander Vyushkov – University of Notre Dame
• Sandra Gesing – University of Notre Dame
• Ali Swanson – University of Oxford

6.2.2 Summary of Discussion
In addition to the points noted in the main discussion
(§5.2), we also discussed the following:

“Are you an RSE or a RA?” is not properly a binary ques-
tion. Most of us sit at different points on that spectrum,

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 16	of	31	

and move along it during our careers (usually from RA
to RSE—examples of movement in the other direction
from readers would be welcomed). Either way, the label
“Research Software Engineer” is now starting to have
some power. Many scientists do not want to be writing
code; some do, to varying degrees. These groups can use-
fully support each other.

What is the power of the label? How can we get the
word out about RSE support using the label?

Will research science developers be required in the long
run? One issue that came up was whether the need for
developers was a time bounded one; is it the case that the
new generation of computer and software savvy scientists
will be so comfortable in developing their own code that
the professional developers will not be needed? And this
brings up the flip side question, “Do scientists really want
to be writing code?”

We also had a little discussion about how to make a
career path for research developers. It need not be solely
an academic enterprise, but in the past tenure has often
been problematic for people of this class.

Skills and resources may vary between teams. To help
resolve this, maintaining high levels of communication
between groups will be valuable. In the United Kingdom
(UK), there are plans to permit resource sharing between
institutional RSE groups. Perhaps there are circumstances
under which an RSE skill exchange could be arranged,
either formally or informally.

Collaborative funding can be crucial to RSE groups, to
ensure that research leadership remains with the domain
scientists. As an example, at NCAR, university partner-
ships are required for submission of proposals, so collabo-
ration is an essential part of grant submission, and this
will tend to bring developers and scientists together. The
UCL group also follows this approach, with all bids requir-
ing an academic collaborator.

Domain scientists and developers are funded together
in a single proposal. Another example of a success is the
development of semantics and linked data in support
of ocean sciences. An EarthCubefunded project pairs
domain scientists with RSEs and has been successful; the
semantics attached have increased data use and discovery
significantly.

An alternative approach has been the provision of pro-
gramming expertise as part of national compute services.
The US XSEDE project’s Extended Collaboration Support
Services (ECSS) is a set of developers who are paid with
XSEDE funding, and are on “permanent” staff. When PIs
request allocations on XSEDE resources, there is a finite
pool of developer time that can be awarded, typically for
one year only, and at partial effort, typically 20 percent
or so. The finite time allowed provides motivation for the
scientist and the scientist’s group to work closely with
the developer and to become educated in what the devel-
oper is doing, so they can sustain the effort once the ECSS
period is over. This funding mechanism can be highly effi-
cient for scientific problems, because the developer pool
assembled by the research providers are, by definition,
expert in the characteristics of their specific resource,
and can very quickly assess the scientist’s needs, and what

it will take to implement software that meets the user’s
needs. However, it does not develop capacity within insti-
tutions, and since XSEDE is a time-bounded program,
it should not be relied upon as a long-term solution to
acquiring this type of capacity.

The UK allows this kind of collaboration to support the
creation of scientific software for the large supercomput-
ing resource (ARCHER). However, while the support can
come from the staff of the Edinburgh Parallel Computing
Centre, who hosts the computer, this “embedded CSE”
resource also funds the programming coming from local
groups. This has been very helpful in providing funding
to establish local groups. These groups work best when
they develop good collaborations with national cyberin-
frastructure pools. When an organization assembles a
developer pool, diversity is developed and skills can be
transferred.

We would like to see these models applied outside
high performance computing. Most scientific software
is not destined to run on national cyberinfrastructure,
but needs similar support. The argument regarding mak-
ing better use of expensive hardware through software
improvements has been useful politically, (and many RSE
groups are cited in organizations which host clusters for
this reason), but the time has come to make the case that
software itself is a critical cyberinfrastructure, and, with
a much longer shelf-life than hardware, is itself a capital
investment.

The CANARIE group (Canada) accepts proposals for pro-
viding services to broad communities, integrating people
who are doing things that are complementary. The goal
is to make the available stack more robust and richer for
everyone. They offer short cycles of funding for creating
some useful functionality that shows a diversity of input
and draws from across disciplines as a key metric, If this
metric is met successfully, then more funding may follow.
This can apply within or across institutions.

There can be problems communicating across cultural
barriers, with domain scientists seeing developers as
“other”. Both collaboration and tools to fund, encourage,
or motivate collaboration are extremely important.

We think support from non-governmental organizations
will be important if RSE groups will become established.
The Sloan Foundation is currently funding data science
engineers, who work in the context of other software
developers at the University of Washington. These scien-
tists work in the e-Science Studio/Data Science Studio,
and they help a group of graduate students in solving their
problems in data science and data management. During
Fall and Spring, a 10-week incubator program allows stu-
dents to work two days a week on a data-intensive science
project. Some fraction of the developer time is dedicated
to the developers’ personal interests as well as instruction.

The goal for Sloan is to obtain success stories and
demonstrable value of the presence of data scientists
on university staff. These stories are the basis for argu-
ments to the host organization. This is an effort to create
awareness of the value of research scientist developers.
Embedding with scientists, and adding spare capacity is
critical to making the innovation possible. This model is

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 17	of	31	

essentially to argue for permanent budget lines to support
data scientists as part of university staff hires, just as with
core facilities. This could become a fee-for-service model
requested by grant funding, just as DNA sequencing is for
core facilities, if it becomes apparent that this gives com-
petitive advantage to a university’s research effort.

One model that has been helpful in finding funding for
RSE groups is the use of funds left over on research grants
when RAs have left prematurely – PIs like this arrange-
ment as it is hard to find good staff for short-term posi-
tions, so having a pool of research programming staff on
hand resolves this problem. We recommend that funders
give explicit guidance to grant holders and institutions
that such an arrangement is favorable. Framework agree-
ments permitting this to go ahead without checking back
every time with funders and/or grant panels would fur-
ther smooth this. (This also provides more stable jobs
for those who hold these skills, but arguments about
making life nicer for postdocs will not help persuade
funders or PIs!)

There is some question about the most effective dura-
tion and percentage of full time for a programmer’s
work on a project. At least three months is necessary
for the programmer to read into the science (RSEs must
not become so disengaged from research that they do
not have time to read a few papers – this will result in
code which does not meet scientific needs), but too long
could result in an RSE losing their flexibility, becoming
so engaged in one project that when that project ends,
they find it hard to transfer. For this reason, we recom-
mend that 40% is ideal; two projects per developer,
with some time for training and infrastructure work.
Having two developers per project seems to be ideal,
in the sense that software development is enhanced by
two pairs of eyes.

There is, as yet, no clear answer as to the scale of aggre-
gation needed to make such a program work. A univer-
sity wide program allows enough scale to be robust
to fluctuations of funding within one field. But a spe-
cialization focus on developers to support, for example,
physical or biological sciences may be preferable, if the
customer base is large enough. The desire to aggregate
enough work to make it sustainable, and the need to
have domain-relevant research programming skills, are
in tension.

In the UK, another source of funding for research soft-
ware is the Collaborative Computational Projects (CCPs):
domain specific communities put forward proposals that
are a priority of the community as a whole, for example,
biosimulation or plasma physics. These bodies act as cus-
todians of community codes, and a central team also pro-
vides software engineering support.

However this area develops, the need for funding for
software as a cyberinfrastructure component is clear.
Funding that permits code to be refactored, tidied, and
optimized is rare; this is often done “on the sly” in a scien-
tifically focused grant. The UK EPSRC’s “software for the
future” call, which really permits explicit investment in
software as an infrastructure, is so oversubscribed as to
have a 4% success rate; the demand is clear!

One opportunity is the idea of co-design, where
infrastructural libraries are developed alongside the
scientific codes that will call them. However, collabora-
tion is hard to foster here; as incentive structures are
still focused on short-term papers. This can cause infra-
structure developers to focus more on publications in
their areas of mathematics and computer science, the
domain developers on the shorter-term needs of their
own fields. Genuine collaborative co-construction is
harder to foster.

It can be more difficult to help leading domain scien-
tists see the value of engineering effort than those in
their teams who are forced to work with difficult-to-use
or unreliable software tools, as they do not see the pain.
Perhaps a version of “software carpentry” targeted at those
PIs who are awarded or apply for software-intensive grants
could be valuable here.

RSEs provide a useful contribution to their univer-
sities’ teaching missions, as well as research, as they
are well placed to deliver the research programming
training that many scientists now need. In the longer
term, with programming skills taught to all through
their careers, we hope specialist scientific developers
will be less needed.

6.2.3 Key Next Steps
We will seek to identify and approach existing research
programming organizations, to get their permission to list
them on a list of research software groups. Casual conver-
sation during the meeting made it clear that although the
title is not widely used in the US, this position is not rare.
We spoke with several individuals who, at distinct univer-
sities, had RSEs (in effect if not in name) who were funded
under differing models.

We will also look for examples of groups which have
successfully become self-sustaining following initial seed
funding.

In this respect, information gathering via a survey and
subsequent analysis could be very useful. We would need
to assemble a list of targeted individuals. (What posi-
tions and ranks are likely to know and care enough to
respond?) Perhaps the Science Gateway Institute has
already acquired information that could be helpful to
advance this issue, and/or craft a proper survey and sug-
gest target individuals.

6.2.4 Plan for Future Organization and Future
Needs
The UK RSE community will provide initial facilities to
host this list, and continue to work to spread the initiative,
but local leadership in the US is needed if this campaign is
to succeed. This will require an initial gathering of identi-
fied research software organizations in the US to this end.

6.2.5 Description of Funding Needed
Financial support for an initial conference that brings
together research software groups to form an organization
and create a resource sharing structure would help to fur-
ther this campaign. Funding to conduct and analyze a sur-
vey could also be quite useful as knowing where we stand

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 18	of	31	

today, and what models are in use could fuel the ideas for
further development of developers in this category.

In the longer term, funding organizations, especially
non-governmental organizations with the capability to
effect innovation through seed funding, could provide
support to nucleate the creation of research software
groups. As noted above, Sloan has already initiated one
such program, and collaboration with Sloan or at least
study of their methods and success or failure could be
extremely useful in approaching universities and other
institutions in funding this development track. It seems
clear that if the value proposition can be made to univer-
sity administrators, this track could flourish with buy-in at
the administrative level.

6.3 Transition Pathways to Sustainable Software:
Industry & Academic Collaboration Working Group
Discussion
Nic Weber44 will serve as the point of contact for this work-
ing group.

6.3.1 Group Members
• Nic Weber – University of Washington
• Suresh Marru – Indiana University
• Jeffrey Carver – University of Alabama
• Davide DelVento – NCAR/CISL
• Steven Brandt – Louisiana State University

6.3.2 Summary of Discussion
The group’s initial broad question was, “What makes for
successful transitions of scientific software from academia
to industry?” There are a number of potential funding
transitions that may occur:

• A project could be re-funded, and development or
maintenance of the software continue as planned.

• A project might locate a new source of funding in
which case the software may be further developed or
simply maintained as before.

• The project could transition to a community supported
model whereby the software’s ownership, maintenance,
and stewardship become similar to peer-production
models in open-source (e.g., see Howison [41]).

• The project could receive some form of industry spon-
sorship in which case ownership of the intellectual
property, licensing, maintenance activities, hosting,
etc. may change significantly.

• The project could gain attention from a industry use
case who would potentially make in-kind contribu-
tions by having paid staff contribute to the software.

We characterized each of the above potential changes in
funding as “transition pathways” to sustainable software
(see similar work by Geels and Schot [42]).

Our work at WSSSPE3 included the following three
activities (described in more detail below): (1) brainstorm-
ing goals for this type of research, (2) imagining potential
outcomes of completing a set of case studies on this topic,
and (3) generating a set of working definitions for some of
the broad concepts we are describing.

First, we discussed the goals of this research, attempting
to answer the question What is the goal of doing research
on transition pathways? A number of research questions
arose: Can we identify collaborations that have occurred
and try to understand which were successful, which were
unsuccessful, and what factors contributed to these suc-
cesses/failures? Can we determine what each partner
wants to get out of such a collaboration? For example,
why would industry be interested in collaborating with
academia? Or why would academia be interested in col-
laborating with industry? How could we design a study
that focused on the impact of the software in undergoing
this type of transition?

Next, we imagined potential outcomes of research
on this topic, involving a set of case studies that look at
successful and unsuccessful transitions of researchers
between academia and industry. This might address each
of the transition types (as described below). Successful
transitions are described as those that lead to either weak
or strong sustainability (also defined below). In addition,
the results from this research might help create a general-
izable framework that might allow for the study of differ-
ent transition pathways (other than academia to industry).

Finally, we created some general definitions for these
concepts; we characterize transitions in the following
ways:

• Handoff model: academia initially writes the software,
industry (for-profit or nonprofit) then takes over the
project.

• Co-Production Model: industry and academia interact
throughout development of the project.

• Sponsorship Model: academia writes and maintains
the software; industry contributes funding for the
development/maintenance of software. In this exam-
ple, industry is also likely a user of the software.

• Spinoff model: transition to a for-profit or non-profit
company owned by or in collaboration with original
developers.

We characterized sustainability in the following ways:

• Weak Sustainability: Software continues to be acces-
sible, useful, and usable.

• Strong Sustainability: Software meets criteria above,
but is also able to be reused for further innovation
(i.e., issued non-restrictive open-source license).

We refer readers to Becker et al. [6] for an extended discus-
sion of weak versus strong sustainability.

6.3.3 Description of Opportunity, Challenges, and
Obstacles
The opportunity is to create a catalog of success/fail-
ure for current and future software projects to be pre-
pared for transitions and achieve sustainability of the
software.

The obstacle is more superficial, in finding a champion
to gather such information. It will be a challenge to keep
this information and surveys updated. With changing

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 19	of	31	

rapidly changing industry landscapes, an obsolete survey
could be of less or no use.

6.3.4 Key Next Steps
Identify projects that are collaborative, perhaps by review-
ing funded projects from programs specifically geared
towards industry academic collaborations.

Develop a systematic process for conducting case stud-
ies (what kind of data are being gathered about each case).

6.3.5 Plan for Future Organization
No concrete plans have been made at this point. If the
community can rally behind this topic, some momentum
could be built. Those interested should post at https://
github.com/WSSSPE/meetings/issues/46

6.3.6 What Else is Needed?
Nothing at the moment.

6.3.7 Key Milestones and Responsible Parties
A key portion of this effort will require focused surveys
of projects which have succeeded and failed in transition.
Both these categories will yield good learning on what
works and what does not work. The group has identified
what needs to be studied further, but has not identified
responsible parties to conduct them.

Community members could help in gathering data by
means of interviews, historical documents or documenta-
tion, and surveys.

An example of data collection is:

• Origin: Where did project start?
• People involved: How many people in original project

were involved in transition/collaboration?
• Specs on software
• Language
• Size
• Hardness (age)
• Lead-up to Transition: How long was project in devel-

opment before it began transition?
• Motivation for Transition: Why was transition initi-

ated? By whom?

6.3.8 Description of Funding Needed
Concrete funding needs were not discussed in this work-
ing group but a general impression was that some seed
funding would motivate members of this group or others
in community to launch a survey effort.

6.4 Engineering Design Group Discussion
Birgit Penzenstadler45 and Colin C. Venters46 will serve
as the points of contact for this working group, and be
responsible for ensuring timely progress of the planned
actions.

6.4.1 Group Members
• Birgit Penzenstadler – California State University, CA,

USA
• Colin C. Venters – University of Huddersfield,

Huddersfield, UK

• Matthias Bussonnier – UC Berkeley, CA, USA
• Jeff McWhirter – Geode Systems
• Patrick Nichols – National Center for Atmospheric

Research, CO, USA
• Ilian Todorov – Science & Technology Facilities Coun-

cil, UK
• Ian Taylor – Cardiff University, UK
• Alexander Vyushkov – University of Notre Dame,

IN, USA

6.4.2 Summary of Discussion
This group was comprised of members from different
backgrounds, including quantum chemistry, epidemiol-
ogy, microscopy, computer science, and software engineer-
ing. Each participant was invited to give their perspective
on the topic area and what they thought were the crucial
points for discussion. There was a general consensus that
there was a need for relating principles to practice for
the computational science and engineering community.
Furthermore, various members of the group expressed
their interest in tools and best practices for facilitating
the maintenance and evolution of scientific software sys-
tems. It was agreed to identify principles from software
engineering and from sustainability design and, based on
those lists, discuss what each of those would mean applied
to specific example systems from the expert domains of
some of the group members. The group identified a num-
ber of software engineering principles drawn from the
Software Engineering Body of Knowledge (SWEBOK) [32].

Software design principles include abstraction, cou-
pling and cohesion, decomposition and modularization,
encapsulation and information hiding, separation of
interface and implementation, sufficiency completeness
and primitiveness, and separation of concerns. Similarly,
user interface design principles include learnability, user
familiarity, consistency, minimal surprise, recoverability,
user guidance, and user diversity. The sustainability design
principles were drawn from the Karlskrona Manifesto on
Sustainability Design [6]. The manifesto states that sus-
tainability is systemic, multidimensional, and interdisci-
plinary; transcends the system’s purpose; applies to both
a system and its wider contexts; requires action on multi-
ple levels; requires multiple timescales; changing design
to take into account long-term effects does not automati-
cally imply sacrifices; system visibility is a precondition for
and enabler of sustainability design. A number of sustain-
able software engineering principles proposed by Tate
[31] were also considered including: continual refinement
of product and project practices; a working product at all
times; continual emphasis on design; and value defect
prevention over defect detection.

This congregated list is an initial collection of principles
that could be extended by adding from further related
work form separate disciplines within the field of software
engineering, including requirements engineering, soft-
ware architecture, and testing. The group identified two
example systems to discuss the application of the princi-
ples. The first one was a quantum chemistry system that
allows the analysis of the characteristics and capabilities
of molecules and solids. The second one was a modeling

https://github.com/WSSSPE/meetings/issues/46
https://github.com/WSSSPE/meetings/issues/46

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 20	of	31	

system for malaria that permitted biologists to analyze
a range of datasets across geography, biology, and epi-
demiology, and add their own datasets. The group then
examined the principles and took a retrospective analy-
sis of what the developers did in practice against how the
principles could have made a difference. This raised the
question, what do the principles mean for computational
scientific and engineering software? Similarly, how do the
principles relate to non-functional requirements? It was
suggested that at the very minimum, that sustainable
software engineering principles should be mapped to two
core quality attributes that underpin technically sustain-
able software:

• Extensibility: the software’s ability to be extended and
the level of effort required to implement the exten-
sion;

• Maintainability: the effort required to locate and fix
an error in operational software.

These fundamental building blocks could then be
extended to include other quality attributes such as port-
ability, reusability, scalability, usability, and energy effi-
ciency etc. Nevertheless, this raises the question of what
metrics and measures are suitable to demonstrate the
sustainability of the software. In addition, what do the
five dimensions of sustainability mean for scientific soft-
ware, i.e., environmental, economic, social, technical and
individual?

6.4.3 Description of Opportunity, Challenges, and
Obstacles
The opportunity was identified to distill existing software
engineering and sustainability design knowledge into
“bite sized” chunks for the Computational Science and
Engineering Community. In addition, two primary chal-
lenges were identified:

• Mapping of the principles to best practices.
• Demonstrating the return on investment of those

best practices.

6.4.4 Key Next Steps
In order to achieve the following three goals: (1) a sys-
tematic analysis of a number of example systems from
different scientific domains with regards to the identified
principles, (2) the identification of the commonalities and
gaps in applying the principles to different scientific sys-
tems, and (3) a proposal of a set of guidelines on the prin-
ciples, the following next steps were discussed.

6.4.5 Plan for Future Organization
The following plan for future organization was discussed:

• Identify suitable undergraduate or post-graduate stu-
dents.

• Design and pilot study.
• Organize coordinating online calls via Google

Hangout.

6.4.6 What Else is Needed?
• Ethics committee review panel approval required for

data collection.

6.4.7 Key Milestones and Responsible Parties
The following key milestones were discussed as a road-
map for the set of guidelines on software engineering
principles:

• Oct/Nov 2015: Study design and interview guideline
• Jan/Feb 2016: Interviews conducted and transcribed
• Mar/Apr 2016: Analysis complete
• May 2016: Report written

6.4.8 Description of Funding Needed
Specific funding was not discussed in this working group.
However, this is a open topic that can be discussed in rela-
tion to emerging funding calls from National agencies or
grant proposal initiatives.

6.5 Metrics Working Group Discussion
Gabrielle Allen47 will serve as the point of contact for this
working group.

6.5.1 Group Members
• Gabrielle Allen – University of Illinois at Urbana-

Champaign
• Emily Chen – University of Illinois at Urbana-Champaign
• Neil Chue Hong – U.K. Software Sustainability Institute
• Ray Idaszak – RENCI, University of North Carolina at

Chapel Hill
• Iain Larmou – Engineering and Physical Sciences

Research Council
• Bernie Randles – University of California, Los Angeles
• Dan Sellars – Canarie
• Fraser Watson – National Solar Observatory

6.5.2 Summary of Discussion
The group discussion began by agreeing on the common
purpose of creating a set of guidance giving examples of
specific metrics for the success of scientific software in
use, why they were chosen, what they are useful to meas-
ure, and any challenges and pitfalls; then publish this as a
white paper. The group discussed many questions related
to useful metrics for scientific software as follows:

• Is there a common set of metrics, that can be filtered
in some way

– Does this create a large cost
• Can we fit metrics into a common template (i.e., for

collection, for description)
• Which would be the most useful ones

– Which ones would be most useful for each
stakeholder

• Which ones are the most helpful, and how would we
assess this

• How do you monitor
– Self-checking – if monitoring is done in the open,

then people will call out cheats

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 21	of	31	

• Should this be published with the software metadata
– This would make it easier for public to see the

metadata
– However, there is no commonly-used standard

(DOAP is a good standard but not widely adopted)
– The Open Directory Project (ODP) metadata is

available for UK infrastructure
• Intersection of most useful and easiest to collect

should be explored
• How can students/curricula be used as part of a solu-

tion
• Number of users could be affected by other metrics

including, e.g., accessibility
• Assume metrics are collected properly, but guidance

should be provided none-the-less
• Continuum for each metric

– Ideal situation is the absolute minimum, so that
people can decide on their own what the cost
versus usefulness tipping point is

• Maturity plays a part
– Consider different metrics brackets for different

maturity levels
• What are we using metrics for

– What software should I use if I have a choice
– Where should funders place funding for best

impact (e.g., funding two-star software versus
three-star) and where there are gaps

– How to promote reduction of code proliferation
– Metrics used for software panels to provide

information
– Metrics used for finding problems in their

systems
• Can we use metrics to help people identify the best

codes as part of a community effort

Next, a roadmap for how to proceed was discussed
including creating a set of milestones and tasks as
follows:

• Can we create a roadmap and milestones for this
activity

• Need to come up with a set of tasks
• Go to NSF Software Infrastructure for Sustained Inno-

vation (SI2) projects asking them what metrics they
defined, and how useful they were

– Milestone: Create report which assesses the met-
rics that SI2 projects used

* Ask SI2 PIs to say what metrics they said
they would use (copied from proposal)

* Ask SI2 PIs what numbers they reported
* Ask SI2 PIs what they would have changed
* A UIUC student on the project will work on

this
– Tentatively aim for March 2016

• Do something similar for UK SFTF and TRDF software
projects to ask them what would be useful metrics to
report; also eCSE projects

– Compare these to understand if there were any
implications for including metrics

• Collaboratively create plan and documentation for
doing this

– Give some examples from group members proj-
ects, and aim to build out some of the measure-
ment continuum

– Road-test at the WSSSPE4 meeting
• Collect the various frameworks together and do a

comparison summary

The idea was put forth for the group to interact with
the organizing committee of the 2016 NSF Software
Infrastructure for Sustained Innovation (SI2) PI workshop
in order to email out a software metrics survey to all SI2
and related awardees as a targeted and relevant set of
stakeholders. This survey would be created by one of the
student group members. Similarly, it was suggested that a
software metrics survey be sent to the UK SFTF and TRDF
software projects to ask them what metrics would be use-
ful to report. The remainder of the discussion focused
mainly on the creation of a white paper on this topic. This
resulted in a paper outline and writing assignments with
the goal of publishing in venues including WSSSPE4, IEEE
CISE, or JORS.

6.5.3 Description of Opportunity, Challenges, and
Obstacles
The following opportunities, challenges, and obstacles
were discussed:

• Metrics are important for:
– Tenure and promotion
– Scientific impact
– Discovery
– Reducing duplication
– Basis for potential industrial interest in adopting

software
– Make case for funding

• No commonly used standard for collecting or present-
ing metrics

• We do not know if there is a common set of metrics
• We have to persuade projects that it is useful to col-

lect metrics

6.5.4 Key Next Steps
The following next steps were discussed:

• Skype phone call to coordinate shortly after the con-
clusion of the WSSSPE3 workshop

• Get started on IRB at University of Illinois Urbana-
Champaign in anticipation of SI2 project survey (may
need more thought into survey)

• Get started on white paper and associated survey

6.5.5 Plan for Future Organization
The following plan for future organization was discussed:

• Our group has created a white paper outline with sections
assigned to the above individuals; see timeline below.

• Organize coordinating phone calls.

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 22	of	31	

6.5.6 What Else is Needed?
The following list of what else is needed was discussed:

• IRB approval/exemption needed for surveys, collect-
ing data

• Coordination with 2016 NSF SI2 PI workshop organ-
izing committee to possibly piggyback on this event
to offer survey to attendees in advance

• Coordination (mail communication, info page, etc.)
via WSSSPE GitHub or other means?

6.5.7 Key Milestones and Responsible Parties
The following items were discussed as a roadmap for the
production of a white paper:

(1) October – November 2015: IRB paperwork as appro-
priate completed (Gabrielle Allen and Emily Chen)

(2) October – December 2015: Draft white paper sec-
tions 1–3 (the paper outline has initial writing
assignments)

(3) October – December 2015: Run surveys and collect
information
(a) Piggyback on planning for 2016 NSF SI2 PIs

meeting to be held Feb 16-17, 2016
(4) January – February 2016: Analyze results of data

collection from projects
(5) March – April 2016: Draft sections 4-7 of the white

paper
(6) May 2016: Draft section 8-9 of the white paper
(7) May – June 2016: Get initial feedback from mem-

bers of the community and revise
(8) Est. July 2016: By the time of next CFP for WSSSPE,

to have a complete draft of the white paper
(9) Est. Sept – Oct 2016: Responses to white paper to be

submitted to WSSSPE4

6.5.8 Description of Funding Needed
Funding needs were not discussed in this working group
and it was thought that this could potentially be revisited
down the road.

6.6 Training Working Group Discussion
Nick Jones48 will serve as the point of contact for this
working group, and be responsible for ensuring timely
progress of the planned actions.

6.6.1 Group Members
• Nick Jones – New Zealand eScience Infrastructure
• Iain Larmour – Engineering & Physical Sciences

Research Council, UK
• Erin Robinson – Foundation for Earth Science

6.6.2 Summary of Discussion
While little training focuses specifically on sustainable
software, a variety of training activities could increase
researcher awareness of and engagement with soft-
ware professionals and software engineering practices.
Research Software Engineers are being recognized as
critical contributors to high quality research; the path-
way to acquire and master the relevant skills is not yet

clear; equally those skills required by researchers in gen-
eral are also not commonly understood nor routinely
developed.

The group’s discussion explored a rapidly growing
array of training that is seen to contribute to sustainable
software. The offerings are diverse, including: self-paced
online modules focused around specific tools; single and
multiple day training workshops that raise awareness of
a tool chain to support collaborative and shared software
development within a research workflow; block courses
specializing on particular methods, technologies, and
applications; academic programs at undergraduate and
masters levels; doctoral training programs that in part
contain requisite skills training activities.

While some of this training focuses on applying
software engineering practices within the context of
research, meeting the values and goals of research are
less often incorporated as explicit learning outcomes.
With software (and similarly, data) often being the only
tangible artifact of a research method or protocol, the
dependency between software applications and the qual-
ity of research adds complexity to the learner’s journey.
In recognition of the longer term investment required
by researchers to integrate such skills into their research
practices, many activities are focusing on emotionally
engaging researchers and cohorts, to build a sense of
shared purpose beyond the obvious goal of technical
skill acquisition.

In reviewing current training activities, the group
identified a variety of perspectives seen as useful in
positioning activities in ways to better communicate
why and when best to apply each activity. Training can
be categorized on a variety of spectra, with content and
delivery ranging across them, for example: programming
to research; basic to advanced; technical to emotional;
informal to formal; and self-paced to participative. A
few attempts have been made to situate a cross section
of training activities within such dimensions, creating
easier means of communicating the value of any specific
opportunity and the pathways across opportunities over
time.

Evaluation of training delivery and outcomes is seen
as a weakness common to most non-academic training
activities. Opportunities for measuring success in deliv-
ering training start simply with collecting a Net Promoter
Score, which lets those delivering training know whether
attendees are likely to recommend the training to others.
In looking at the longer term outcomes for the learner,
frameworks such as Bloom’s taxonomy and Kirkpatrick’s
evaluation model offer possible approaches.

In this latter case of formal evaluation, ownership of
evaluation as a component of career development for
any researcher appears mostly absent. While academic
research institutions have professional development
centers to support research staff, the skills taught which
might impact on sustainable software are limited at best,
and lack a clear and coherent development pathway.

Coordination of these training projects will depend
on buy-in from a broad range of training program and
activity leaders, suggesting a key opportunity lies in

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 23	of	31	

identifying and bringing together these people on a
regular basis.

6.6.3 Description of Opportunity, Challenges, and
Obstacles
Software skills are needed by an increasing array of
researchers and fields. The training arc is not well-defined,
with a sometimes baffling array of training opportuni-
ties responding to various facets of skill deficit and need.
Given this current complexity, coordination across train-
ing projects would create common frames of reference,
communicating and integrating activities to better serve
the needs of researchers.

Building this community could lift the maturity
of training projects and capabilities, enabling more
advanced approaches to address key gaps in evaluation,
career development, and a lift in the standard of research
practices.

In aiming at these opportunities, it will be necessary
to find the means to support those involved in leading
training activities to allocate time to coordination activi-
ties, which will often sit beyond their current scope of
responsibility.

These activities are also distributed globally, with no
single country or region offering a comprehensive set of
capabilities and initiatives. Any coordination activity will
therefore need to raise the profile of the opportunity gap
with relevant research funders and policy makers.

6.6.4 Key Next Steps
The goal of the following next steps is to quickly test
whether there is interest in establishing a community
committed to increasing the degree of coordination across
training projects.

(1) Hold a virtual meeting by December 2015, to bring
together a broader group of interest in this topic,
with specific goals to:
(a) Identify programs with existing activities

aimed at integrating across training projects.
(b) Identify training projects with an interest in

participating in coordination efforts.
(c) Identify funding opportunities to bring

together training program and project lead-
ers to identify shared goals for future coordi-
nation of activities.

(d) Agree on a communications plan to qualify
whether programs, projects, and funders are
interested in engaging and committing to
ongoing activities.

(2) Review progress within 3 months, to establish next
steps, if any.

6.6.5 Plan for Future Organization
Continue to track progress by posting comments to
WSSSPE3 issue.

6.6.6 What Else is Needed?
If the group moves from early-stage formation into work-
ing towards shared goals, expertise will likely be required
in pedagogy and training evaluation.

6.6.7 Key Milestones and Responsible Parties
(1) October through December, Nick Jones and Erin

Robinson to draft WSSSPE3 report back.
(2) Before February 2016, Nick Jones and Erin Rob-

inson to call a meeting of the broader group, to
review key next steps.

(3) Second quarter 2016 – if willing parties are iden-
tified, draft workshop proposal and identify a rel-
evant forum, including future WSSSPE events.

6.6.8 Description of Funding Needed
Workshop/RCN travel funding to bring together key
program, project, and funder representatives from
across North America, EU, UK, Australasia. In addi-
tion, funding to support work on better defining the
landscape of training activities, the useful perspectives
in communicating the value of the varied training
projects, and the possible pathways through training
activities over time.

6.7 Software Credit Working Group Discussion
Kyle Niemeyer49 will serve as the point of contact for this
working group, and be responsible for ensuring timely
progress of the planned actions.

6.7.1 Group Members
• Alice Allen – Astrophysics Source Code Library
• Sou-Cheng Choi – NORC at University of Chicago, Illi-

nois Institute of Technology
• James Hetherington – University College London
• Lorraine Hwang – University of California, Davis
• Daniel S. Katz – University of Chicago, Argonne

National Laboratory
• Frank Löffler – Louisiana State University
• Abigail Cabunoc Mayes – Mozilla Science Lab
• Kyle E. Niemeyer – Oregon State University
• Grace Peng – National Center for Atmospheric

Research
• Ilian Todorov – Science & Technology Facilities

Council, UK

6.7.2 Summary of Discussion
The following section summarizes the working group’s
discussion based on contributions prior to the meeting
[43] and the collaborative notes taken during the meeting
[44]. Please refer to the original sources for the unedited
discussions if necessary.

Initial discussions focused on both various mechanisms
for, and the philosophical approach behind, crediting soft-
ware in scientific papers. These began with proposals for
various ways to credit software (or other research products
including data) that contributed more significantly than a
generic citation, including:

• A hierarchy of citations, with a “substantial” citation
category to indicate software or data that played a
more significant role in the research;

• Transitive credit [37, 38], which assigns contripo-
nents (contributors and components) various
weights depending on their level of importance;

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 24	of	31	

• Project CRediT [45], which assigns roles to paper
authors based on their specific contributions; and

• Mozilla Science Lab’s recently introduced Contribu-
torship Badges for Science [46], which provide a
badge—associated with an ORCID [47]—that recog-
nizes author contributions using the taxonomy out-
lined in Project CRediT.

However, as of this writing, only Project CRediT roles [48,
49] and Contributorship Badges [46] have been imple-
mented for published papers, and both of these only
provide a single “Software” or “Computation” category
associated with software. In addition, neither of these
options allows for the citation of software itself, but only
provide an author contribution related to software. The
discussion quickly focused on transitive credit as a more
quantitative measure of allocating credit to both authors
and software, although there were some concerns about
authors overestimating their own contributions com-
pared to prior work.

The discussion then evolved into philosophical ques-
tions about the importance or reliance of a particular
work on prior science, materials, or software—in other
words, whether there is a difference between depending
on prior scientific advances and depending on certain
software (or experimental equipment). Multiple contribu-
tors converged on the conclusion that unique capabilities
require some additional credit. The—albeit limited—con-
sensus was that if a particular study relied on the unique
capabilities of software, data, or an experimental appara-
tus, then the authors or developers that created this capa-
bility should be credited somehow.

The group also agreed on the fact that additional data
was required to support the assertion that software was
not being sufficiently cited in the literature. In particular,
this issue seemed to be field-dependent. For example,
as shown by a study of Howison and Bullard [50], in the
field of biology, the most-cited papers appear to be those
describing scientific software. However, this may not—
and likely is not—the case in other fields, nor is it clear
whether developers of scientific software, even in the case
of the biology field, are receiving sufficient credit for their
efforts.

In the breakout sessions on the first day of WSSSPE3, the
group discussed and deliberated over the Entertainment
Identifier Registry (EIDR) [36] as a potential model for
scientific software. That system assigns unique Digital
Object Identifiers (DOIs)—the same system used for scien-
tific publications—to all content (e.g., movies, television
shows) and contributors, along with relevant metadata.
One important use of the EIDR system is to track rights
and credits for contributors to entertainment works in
order to distribute revenues—similar to the proposed tran-
sitive credit concept.

The group also discussed separating quantitative meas-
ures (e.g., number of citations) from the value of a work in
order to give credit, moving towards qualitative or anec-
dotal evidence of value. Other topics that were brought
up included a form of PageRank [51] for citations, based
on number of mentions, and using market penetration or

adoption rate in a community as a metric, although it was
not clear how this would be measured. Finally, the concept
a software tool’s uniqueness or indispensability to a com-
munity was mentioned, with value being characterized by
a particular piece of software either offering unique capa-
bilities or doing something better, faster, or with less com-
putational requirements than other offerings.

On the second day of WSSSPE3, the group decided to
put aside the taxonomy of contributions and focus on
software citations to ensure developers receive credit
(regardless of contribution). Eventually, once software
citations are standardized, the goal would be to return to
establishing different roles/contributions for this credit.
Following this decision, the group identified two neces-
sary actions to move forward:

(1) standardizing a citation file or some other form of
metadata associated with software, and

(2) standardizing the way to cite software (used
directly) in papers.

For both of these actions, a number of ongoing efforts
were identified and discussed.

Software Citation Metadata:
At a minimum, the metadata required for software cita-

tion includes:

• Name of software,
• DOI for software,
• Contributors, in the form of names and ORCIDs,
• Software dependencies, in the form of DOIs, and
• Other people and artifacts that would be cited or

acknowledged in a paper.

This information would then be contained in a citation
file, e.g., as part of the GitHub repository. The group also
discussed similar efforts such as CodeMeta50, an attempt
to codify minimal metadata schemes in JSON and XML
for scientific software and code, and implementing transi-
tive credit via JSON-LD [38]. Some questions arose about
how this information would be stored for closed-source
software.

As one mechanism for constructing accurate contribu-
tor lists from existing project contributors, the group dis-
cussed associating GitHub accounts—as well as accounts
on Bitbucket, CodePlex, and other repositories for open-
source scientific software—with ORCID accounts. However,
a (quick) response from GitHub (via Arfon Smith) indi-
cated that this might not be possible in the near future:
“GitHub doesn’t have any plans to allow ORCID accounts
to be associated with GitHub user accounts.”

Citing Software in Publications:
Although far from a standard practice, examples of

citing software in publications can be found in various
scientific communities—notably, representative samples
can be found in astronomy [52] and biology [50]. The
group recommended collecting similar examples from
other communities, and then developing a software cita-
tion principles document in concert with the FORCE11
Software Citation Working Group (see §6.7.5 for more

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 25	of	31	

details), following the model of the FORCE11 Data Citation
Principles document [53].

The group further discussed briefly whether software
used directly in a publication—whether to perform simu-
lation or analysis, or as a dependency for newly developed
software—should be distinguished from other references
due to the dependence of the study on these research
artifacts. Suggestions included a separate list of citations
(with DOIs) for software and other research objects that
serve this sort of “vital” role. Similar recommendations
were made by the credit breakout group at WSSSPE2 [4].

Finally, although a discrete task from software citations,
significant discussion focused on ensuring software cita-
tions are indexed in the same manner as publications,
allowing the construction of a corresponding software
citation network. Currently, software releases can receive
citable DOIs via Zenodo [54] and figshare [55]; however,
these citations are not processed by indexers such as Web
of Science, Scopus, or Google Scholar. Thus, either in par-
allel or following the primary task, the group will need
to reach out to these organizations. Initial conversations
with Elsevier/Scopus via Michael Taylor during WSSSPE3
clarified that Scopus is not yet DataCite DOI aware, and
also does not yet have an internal identifier for software
or data (but needs/plans to add this support). Taylor said
they prefer a “software article” with the usual article meta-
data (e.g., authors, citations), and mentioned Zenodo as an
example – this proposal seemed to align with our group’s
discussions. Taylor also mentioned another benefit of the
software and associated DOI on GitHub: in addition to a
citation, one could obtain statistics on usage/downloads/
forks, which happens to be what Depsy51 is beginning to
try to do.

6.7.3 Description of Opportunity, Challenges, and
Obstacles
There currently is no standard mechanism for citing soft-
ware or receiving credit for software (akin to citations for
publications). Software is eligible for DOI assignment, but
DOI metadata fields are not well tuned or standardized
for software (vs. publications). Some software providers
apply for DOIs, but this is not widely adopted. Also, there
is no mechanism to cite software dependencies within
software.

Major obstacles include the fact that indexers (e.g.,
Scopus, Web of Science, Google Scholar) do not currently
support software/data document types or DataCite DOIs.
Therefore, even with universal association of scientific
software with DOIs and standardized practices for citing
software in publications, software citations will not be
indexed in the same manner as traditional publications.

Although this working group’s discussions at WSSSPE3
did not focus much on the topic of tenure and profes-
sional advancement, the group recognized that there is
no standard policy—generally even within a single univer-
sity—for software products to be included in promotion
and tenure dossiers. Thus, it may be difficult to encourage
valuing software contributions across the United States or
United Kingdom and globally; furthermore, stakeholders
are typically not tenured and thus may not be influential

enough to change the status quo. However, as discussed
in Section 5.2, this is changing for Research Software
Engineers, at least in the UK.

6.7.4 Key Next Steps
(1) Hold virtual meeting to determine group members

responsible/willing to work on the following tasks,
to be organized within one month of the workshop.

(2) Compile best practices of software citation across
multiple disciplines, including journals and com-
munities of interest/practice in the research world,
to begin by December 2015.

(3) Compile examples of including other products
in promotion and tenure dossier, to begin by
December 2015.

(4) Draft the Software Citation Principles document
(including citation metadata file), by April 2016.

(5) Publish/release the Software Citation Principles
document, by August 2016.

(6) Reach out to journals, publishers, teachers/edu-
cators, indexers, and professional societieslikely
through meetings with key groups, to begin by
September 2016.

6.7.5 Plan for Future Organization
The WSSSPE breakout group plans to join efforts related
to citing software with the FORCE11 Software Citation
Working Group (FORCE11-SCWG)52; Kyle Niemeyer for-
mally requested the merging of these groups following
the meeting. However, some future plans of the WSSSPE
group fall outside the scope of FORCE11-SCWG, which
covers software citation practices. These activities include
working with indexers such as Web of Science and Scopus
to index software citations archived on, e.g., Zenodo or
figshare, and pursuing the development of an open index-
ing service; such plans will be pursued either separately
or through the formation of follow-on FORCE11 working
groups.

The group will primarily communicate electronically,
with Kyle Niemeyer responsible for ensuring regular
progress.

6.7.6 What Else is Needed?
The near-term actions of the group, focused mainly on
software citation, do not require any additional resources.
However, connections with publishers and indexers will
be needed to pursue related activities, although the
FORCE11-SCWG may satisfy this need; in addition, some
members of the group already reached out to relevant
contacts. Funding may be needed to organize meetings
or for group members to attend relevant meetings, as dis-
cussed further below.

6.7.7 Key Milestones and Responsible Parties
Following the meeting, Kyle Niemeyer formally
requested the merging of software citation activities
with FORCE11-SCWG. Within a month of the meeting,
Niemeyer will organize a virtual meeting of the group
and manage the division of responsibilities for compil-
ing existing practices of software citation and including

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 26	of	31	

software/products in promotion and tenure dossiers.
Building off of these efforts, the next major milestone
is drafting the Software Citation Principles document in
collaboration with the SCWG, targeted for April 2016.
While the existing directors of the SCWG, Arfon Smith
and Dan Katz, lead the efforts of that group towards
the Software Citation Principles document, Kyle will
help coordinate contributions from the WSSSPE group
members.

6.7.8 Description of Funding Needed
Some funding would be useful to support primarily travel
to conferences for group meetings (e.g., FORCE2016)53,
and to hold meetings to bring together both group mem-
bers and key stakeholders (e.g., journals, publishers, pro-
fessional societies, indexers). In addition, funding would
be desired to support group members’ time to perform
work towards the key steps described previously.

6.8 Publishing Software Working Group Discussion
Steven R. Brandt54 will serve as the point of contact for this
working group.

6.8.1 Group Members
• Steven R. Brandt – Louisiana State University
• Daniel Gunter – LBNL
• Yuhan Ding – Illinois Institute of Technology
• Neil Chue Hong – Software Sustainability Institute

6.8.2 Summary of Discussion
A tentative first cut at the list containing executable
papers identified the following:

• ACM Transactions on Mathematical Software (TOMS):
provides the additional step of having reviewers validate
the code which was submitted with the publication.

• The Mathematica Journal: publishes Mathematica
notebooks (with equations, figures, etc.) directly.

• O’Reilly Media: announced that it plans to make IPy-
thon Notebooks a first-class authoring environment
for their publishing program alongside their existing
mechanisms.

• Nature: offers a list of notebooks published alongside
more traditional articles, and is looking at ways to make
these documents more official. There are, in fact, a
number of journals that offer “electronic supplements”
to the more traditionally published static articles.

• IPython: maintained a list of “reproducible academic
publications” [56].

• KBase: offers narratives built on IPython or Jupyter
notebooks for assembling publications that are repro-
ducible, and can be commented or annotated.

The group also discussed future possibilities for a new
publication format that might provide advantages:

• Journals could be built around an existing, widely
used framework thereby reducing the burden of stud-
ying code on the part of reviewers (common bits of

infrastructure which are not relevant to the science
would be automatically excluded).

• Journals might be encouraged to use more metadata,
making them easier to mine for various analytical pur-
poses.

• The Research Ideas and Outcomes (RIO) journal is an
effort to publish fragmentary results that can subse-
quently be combined into a single content item.

• Papers could be made more understandable. Each
equation or technical term could be linked to a docu-
ment/tutorial explaining its origin and/or derivation.

• So many options for publication currently exist
that good science may be getting lost in the noise.
Would some sort of “upvote” mechanism be of
value?

• Some sort of Replicated Computation Results badge
could be made available to publications that have
undergone greater scrutiny (this is already done
by TOMS).

6.8.3 Description of Opportunity, Challenges, and
Obstacles
The opportunity is to collect a list of executable papers
and shine a light on the experiments and development
efforts currently underway.

The only obstacle to this is the difficulty in find-
ing and identifying such publications. The Software
Sustainability Institute was able to do something simi-
lar for publications about software by making a public
page on the Software Sustainability Institute’s website
(http://www.software.ac.uk) containing a catalog of
these publications and enlisting the help of the com-
munity to grow the list.

6.8.4 Key Next Steps
Create the first version of the web page to be displayed on
the Software Sustainability Institute’s website: http://www.
software.ac.uk. We expect the page to be live in early January
of 2016.

An ongoing effort to update the page should follow.

6.8.5 Plan for Future Organization
None at this time.

6.8.6 What Else is Needed?
Nothing else at this time.

6.8.7 Key Milestones and Responsible Parties
Steven R. Brandt has created a first version of the page,
and it is in the process of being posted on the Software
Sustainability Institute’s website: http://www.software.
ac.uk. Neil Chue Hong will take responsibility for the page
once it is up.

6.8.8 Description of Funding Needed
None.

6.9 User Community Working Group Discussion
Point of contact: Dan Gunter55 and Ethan Davis56.

http://www.software.ac.uk
http://www.software.ac.uk
http://www.software.ac.uk
http://www.software.ac.uk
http://www.software.ac.uk

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 27	of	31	

6.9.1 Group Members
• Ethan Davis – UCAR Unidata
• Dan Gunter – Lawrence Berkeley National Lab
• Liz Jessup – University of Colorado
• Mark Miller – University of California, San Diego
• Lindsey Powers – The HDF Group
• Daniel Ziskin – NCAR Atmospheric Chemistry Obser-

vations and Modeling (ACOM) Laboratory

6.9.2 Summary of Discussion
Discussion revolved around a few questions: what is the
benefit of having a “community” for software sustainabil-
ity, what practices and circumstances lead to having and
maintaining a community, how can funding help or hin-
der this process, and perhaps most importantly, how can
best practices be described and distilled into a document
that can help new projects.

The benefits of having a community that were brought
up were considered largely obvious. In addition to hav-
ing advocates for the software, and a possible source
of “free” contributions to the codebase, the community
becomes a good source for requirements, feedback,
and metrics. The software community can also act as
“cheerleaders” who convince funders or other potential
users to fund/use the software, and thus help sustain
the software.

Practices and circumstances that lead to a community
are first, that the software offers value. But in addition
to this, a community will be much more likely to form if
they receive (expert) support when they have questions.
Additional contributing factors are good usability (not
always needed), and an open development process such
as IPython developer meetings on YouTube. It was also
pointed out that an evangelist for the project, not neces-
sarily but often one of the developers, can often make a
big difference.

Funding can help the process by encouraging both
value to the community and high-quality user support.
Only providing funding for the software development
may create good software, but with less likelihood to
have a real community. It was discussed that federal
laboratories are a good incubator for software com-
munities, and that a general facility like EarthCube
is too dispersed to really make a community. Also,
domain-specific groups within laboratories or uni-
versities might provide as an incubator for software
communities.

In describing best practices, the group discussed
the different modes for starting a scientific software
project: building on an existing product that needs
improving, recognizing an unsatisfied need of an
existing community, or creating a new solution to a
need not yet recognized by the community. The group
also thought that the existing books on software
communities would need to be evaluated in light of
differences between science software projects and
general open-source software (OSS) projects in terms
of scale, science, acknowledgement and credit, and
funding models.

6.9.3 Description of Opportunity, Challenges, and
Obstacles
The main opportunity is to increase awareness among sci-
entific software developers and project managers of the
importance of developing a community around their pro-
ject. While this message is fairly well understood in the
open source community, the scientific community can be
more focused on the science a software project is support-
ing rather than the software project itself.

As with many of the issues relevant to the sustainabil-
ity of science software, the main challenge here will be
changing the culture and expectations around scientific
software.

6.9.4 Key Next Steps
The most important next steps is a “Best Practice” docu-
ment, which would describe what successful projects
with engaged communities look like, how to replicate
this type of project, and look at end-of-life on a com-
munity project. Inputs to this document would include
a software community survey of highly functioning
communities such as R Open Science, Python SciPy,
OPeNDAP, and Unidata, with analysis of factors that
feed into their success. Also references like the “Art of
Community” could be adapted and summarized for the
science software community.

More specifically, the group would like to take the fol-
lowing steps:

• Survey successful science software projects
• Survey community members from the surveyed pro-

jects
• Distill the survey results and document best practices

around community engagement
• Look for ways to raise awareness

Another next step would be increasing recognition of
need for science software projects to focus on building
and supporting their user communities. Good software
engineering practices are not enough, and popular train-
ing like Software Carpentry does not currently address
this issue head-on.

6.9.5 Plan for Future Organization
No definite plans were agreed upon for future organiza-
tion. The major ideas discussed were coordinating with
another group or adapting some existing text.

Collaboration within the framework of an existing
organization seems a good initial path. Mozilla Science
maintains a “Working Open Project Guide” [39], the intro-
duction of which states:

Working openly with contributors enables your
community to learn how to build and collaborate
together. This document is a guideline on how to
work openly and involve others in your projects
with Mozilla. We want to help you engage your
community in a way that encourages contributors
and builds other leaders.

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 28	of	31	

Another idea is to form a group that could adapt existing
commercial-oriented guidelines for the world of scientific
software and top-down funding structures. For example,
to distill the “Art of Community” by Jono Bacon [40] for
scientific software.

6.9.6 What Else is Needed?
The group had many points of agreement, but there is not
currently a dedicated core group of people who have com-
mitted to producing the key milestones. Coordination via
phone or online would be necessary to build this “com-
munity” of contributors.

6.9.7 Key Milestones and Responsible Parties
The key milestones for the group’s activities align closely
with the Key Next Steps above:

• Complete and write up a survey of project members,
and community members, for successful science soft-
ware projects

• Distill the survey results and document best practices
around community engagement

6.9.8 Description of Funding Needed
With a small amount of seed funding, it is possible
that members of this group or other parties could
spend the time necessary to devise a survey of exist-
ing projects and deploy this, probably by traveling
to meetings and workshops for the various software
communities.

(7) Conclusions
In WSSSPE3, we attempted to take what we learned from
WSSSPE1 and WSSSPE2 in how we can collaboratively
build a workshop agenda and turn that into an ongoing
community activity. The success or failure of these efforts
will only become apparent over time.

The workshop had two components, presentations and
working groups. The presentations, in the first half day
of the workshop, included an inspirational keynote and a
set of lightning talks. We used lightning talks for two rea-
sons: first, the need of some participants to have a slot
on the agenda to justify their attendance; and second,
as a way to get new ideas across to all the attendees. We
broke with the tradition of requiring the lightning talk
submitters to self-publish their papers, and instead used
a common peer-review platform57, choosing to publish
their slides on the workshop website instead.

The working groups met for a small part of the first
half day and all of the second day, with the exception of
some short periods for the groups to report back to the
collected workshop attendees. Each group determined a
set of activities that the members could do to advance sus-
tainable software in a particular area.

The results of these group sessions made it clear
that there are many interlinked challenges in sustain-
able software, and that while these challenges can be
addressed, doing so is difficult because they generally
are not the full-time job of any of the attendees. As

was the case in WSSSPE2 as well, the participants were
willing to dedicate their time to the groups while they
were at the meeting, but afterwards, they went back to
their (paid) jobs.

We need to determine how to tie the WSSSPE breakout
activities to people’s jobs, so that they feel that continuing
them is a higher priority than it is now, perhaps through
funding the participants, or through funding coordinators
for each activity, or perhaps by getting the workshop par-
ticipants to agree to a specific schedule of activities dur-
ing the workshop as we have tried to do in WSSSPE3. It
remains to be seen, however, if the participants will meet
the schedules they set.

The overall challenge left to the sustainable soft-
ware community is perhaps one of organization: how
to combine the small partial efforts of a large number
of people to impact a much larger number of people:
those who develop and use scientific software. While
WSSSPE might help focus the actions of the groups,
something more is needed to incentivize the wider
community, which is a generalization of the sustain-
able software problem itself.

Acknowledgements
Work by Katz was supported by the National Science
Foundation while working at the Foundation. Any
opinion, finding, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation. Choi’s work was supported in part
by the National Science Foundation research grant DMS-
1522687 and a WSSSPE3 travel award. She thanks the
encouragement and discussion with Fred Hickernell.
Hetherington was funded by the Software Sustainability
Institute, RCUK grants EP/H043160/1 and EP/N006410/1.
Work by Gunter was supported by the Office of Science,
Office of Biological and Environmental Research, of the
U.S. Department of Energy (DOE) under Award Numbers
DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-
00OR22725, and DE-AC02-98CH10886, as part of the
DOE Systems Biology Knowledgebase and by the Office
of Science, Office of Advanced Scientific Computing
Research (ASCR) of the U.S. Department of Energy under
Contract Number DE-AC02-05CH11231 as part of the
Template Interfaces for Agile Parallel Data-Intensive
Science (TIGRES) project. WSSSPE3 was supported by NSF
award 1434218 and funding from the Gordon and Betty
Moore Foundation.

Supplementary Files
The supplementary files for this article can be found
as follows:

• Supplementary File 1: Appendix A, B, C. http://
dx.doi.org/10.5334/jors.118.s1

Competing Interests
Kyle Niemeyer is an Associate Editor of JORS, although
uninvolved in the processing/review of this article.

http://dx.doi.org/10.5334/jors.118.s1
http://dx.doi.org/10.5334/jors.118.s1

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 29	of	31	

Notes
 1 http://wssspe.researchcomputing.org.uk/wssspe3/
 2 http://wssspe.researchcomputing.org.uk/wssspe1/
 3 http://wssspe.researchcomputing.org.uk/wssspe1-1/
 4 https://conference.scipy.org/scipy2014/participate/

wssspe/
 5 http://wssspe.researchcomputing.org.uk/wssspe2/
 6 http://wssspe.researchcomputing.org.uk/wssspe2-1/
 7 http://scipy2015.scipy.org/ehome/115969/286469/
 8 https://github.com/issues?q=label%3A%22WSSSPE3

+activity%22
 9 http://www.ashedryden.com/blog/the-ethics-of-un-

paid-labor-and-the-oss-community
 10 http://ccl.cse.nd.edu
 11 http://geodynamics.org/
 12 https://geodynamics.org/cig/projects/saga/
 13 http://daspos.org
 14 http://kbase.us
 15 http://www.ontosoft.org/gpf
 16 http://www.SE4Science.org/workshops
 17 http://ascl.net
 18 email: nmweber@uw.edu
 19 email: birgit.penzenstadler@csulb.edu
 20 email: c.venters@hud.ac.uk
 21 https://geodynamics.org/cig/dev/best-practices/
 22 https://docs.google.com/document/d/1cgUDH3Rxrf

sLotWhKKOrXUnaYFhrtjcV1TDRkFtwQKI/edit
 23 https://docs.google.com/document/d/10yj7MYEjvrg__

t522XR41ogASYMp647-l-BpFTsqEV4/
 24 https://docs.google.com/document/d/1uDim5bw8r

BuubmtaUrz5Eh35NxzDgivmmdXhVzDs3tc/edit
 25 https://docs.google.com/presentation/d/1PPLVL6uo

OmisqnHTlwhsVKJBTFFK1IVzvr8FdEEIvAE/
 26 http://www.software.ac.uk/software-evaluation-guide
 27 http://www.software.ac.uk/blog/2013-04-09-five-

stars-research-software
 28 http://figshare.com/articles/Minimal_information_

for_reusable_scientific_software/1112528
 29 http://equipment.data.ac.uk/
 30 http://www.canarie.ca/software/
 31 https://science.canarie.ca/researchmiddleware/plat-

forms/list/main.html
 32 https://www.openhub.net/
 33 https://www.innovationpolicyplatform.org/frontpage
 34 email: gdallen@illinois.edu
 35 email: nick.jones@nesi.org.nz
 36 London Software Credit workshop: http://www.soft-

ware.ac.uk/software-credit
 37 FORCE11-SCWG landing page, https://www.force11.

org/group/software-citation-working-group
 38 FORCE11-SCWG GitHub page, https://github.com/

force11/force11-scwg
 39 http://www.ccp.ac.uk
 40 email: dkgunter@lbl.gov
 41 email: edavis@ucar.edu
 42 email: sandra.gesing@nd.edu
 43 email: j.hetherington@ucl.ac.uk
 44 email: nmweber@uw.edu
 45 email: birgit.penzenstadler@csulb.edu

 46 email: c.venters@hud.ac.uk
 47 email: gdallen@illinois.edu
 48 email: nick.jones@nesi.org.nz
 49 email: kyle.niemeyer@oregonstate.edu
 50 CodeMeta: https://github.com/codemeta/codemeta
 51 Depsy: https://depsy.org
 52 FORCE11 Software Citation Working Group, https://

www.force11.org/group/software-citation-working-
group

 53 FORCE2016, https://www.force11.org/meetings/
force2016

 54 email: sbrandt@cct.lsu.edu
 55 email: dkgunter@lbl.gov
 56 email: edavis@ucar.edu
 57 http://easychair.org

References
1. Katz, DS, Allen, G, Chue Hong, N, Parashar, M and

Proctor, D. 2013 First Workshop on Sustainable Soft-
ware for Science: Practice and Experiences (WSSSPE):
Submission and Peer-Review Process, and Results. arX-
iv; 1311.3523. http://arxiv.org/abs/1311.3523.

2. Katz, DS, Choi, SCT, Lapp, H, Maheshwari, K,
Löffler, F, Turk, M, et al. 2014 Summary of the First Work-
shop on Sustainable Software for Science: Practice and Ex-
periences (WSSSPE1). Journal of Open Research Software,
2(1). DOI: http://dx.doi.org/10.5334/jors.an

3. Katz, DS, Allen, G, Chue Hong, N, Cranston, K,
Parashar, M, Proctor, D, et al. 2014 Second Work-
shop on Sustainable Software for Science: Practice and
Experiences (WSSSPE2): Submission, Peer-Review and
Sorting Process, and Results. arXiv; 1411.3464. http://
arxiv.org/abs/1411.3464.

4. Katz, DS, Choi, SCT, Wilkins-Diehr, N, Chue Hong, N,
Venters, CC, Howison, J, et al. 2016 Report on the
Second Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE2). Journal of Open
Research Software, Accepted. Available at http://arxiv.
org/abs/1507.01715.

5. Turk, MJ, Smith, BD, Oishi, JS, Skory, S,
Skillman, SW, Abel, T, et al. 2011 yt: A Multi-
code Analysis Toolkit for Astrophysical Simula-
tion Data. ApJS, Jan; 192:9. DOI: http://dx.doi.
org/10.1088/0067-0049/192/1/9

6. Becker, C, Chitchyan, R, Duboc, L, Easterbrook,
S, Mahaux, M, Penzenstadler, B, et al. 2014 The
Karlskrona manifesto for sustainability design. arXiv;
1410.6968. http://arxiv.org/abs/1410.6968.

7. Patra, AK, Bauer, AC, Nichita, CC, Pitman, EB,
Sheridan, MF, Bursik, M, et al. 2005 Parallel adaptive
numerical simulation of dry avalanches over natural
terrain. Journal of Volcanology and Geothermal Re-
search. Modeling and Simulation of Geophysical Mass
Flows, 139(1): 1–21. DOI: http://dx.doi.org/10.1016/j.
jvolgeores.2004.06.014

8. Meng, H, Kommineni, R, Pham, Q, Gardner, R,
Malik, T and Thain, D. 2015 An invariant framework
for conducting reproducible computational science.
Journal of Computational Science. Computational Sci-

http://wssspe.researchcomputing.org.uk/wssspe3/
http://wssspe.researchcomputing.org.uk/wssspe1/
http://wssspe.researchcomputing.org.uk/wssspe1-1/
https://conference.scipy.org/scipy2014/participate/wssspe/
https://conference.scipy.org/scipy2014/participate/wssspe/
http://wssspe.researchcomputing.org.uk/wssspe2/
http://wssspe.researchcomputing.org.uk/wssspe2-1/
http://scipy2015.scipy.org/ehome/115969/286469/
https://github.com/issues?q=label%3A%22WSSSPE3+activity%22
https://github.com/issues?q=label%3A%22WSSSPE3+activity%22
http://www.ashedryden.com/blog/the-ethics-of-unpaid-labor-and-the-oss-community
http://www.ashedryden.com/blog/the-ethics-of-unpaid-labor-and-the-oss-community
http://ccl.cse.nd.edu
http://geodynamics.org/
https://geodynamics.org/cig/projects/saga/
http://daspos.org
http://kbase.us
http://www.ontosoft.org/gpf
http://www.SE4Science.org/workshops
http://ascl.net
mailto:nmweber@uw.edu
mailto:birgit.penzenstadler@csulb.edu
mailto:c.venters@hud.ac.uk
https://geodynamics.org/cig/dev/best-practices/
https://docs.google.com/document/d/1cgUDH3RxrfsLotWhKKOrXUnaYFhrtjcV1TDRkFtwQKI/edit
https://docs.google.com/document/d/1cgUDH3RxrfsLotWhKKOrXUnaYFhrtjcV1TDRkFtwQKI/edit
https://docs.google.com/document/d/10yj7MYEjvrg__t522XR41ogASYMp647-l-BpFTsqEV4/
https://docs.google.com/document/d/10yj7MYEjvrg__t522XR41ogASYMp647-l-BpFTsqEV4/
https://docs.google.com/document/d/1uDim5bw8rBuubmtaUrz5Eh35NxzDgivmmdXhVzDs3tc/edit
https://docs.google.com/document/d/1uDim5bw8rBuubmtaUrz5Eh35NxzDgivmmdXhVzDs3tc/edit
https://docs.google.com/presentation/d/1PPLVL6uoOmisqnHTlwhsVKJBTFFK1IVzvr8FdEEIvAE/
https://docs.google.com/presentation/d/1PPLVL6uoOmisqnHTlwhsVKJBTFFK1IVzvr8FdEEIvAE/
http://www.software.ac.uk/software-evaluation-guide
http://www.software.ac.uk/blog/2013-04-09-five-stars-research-software
http://www.software.ac.uk/blog/2013-04-09-five-stars-research-software
http://figshare.com/articles/Minimal_information_for_reusable_scientific_software/1112528
http://figshare.com/articles/Minimal_information_for_reusable_scientific_software/1112528
http://equipment.data.ac.uk/
http://www.canarie.ca/software/
https://science.canarie.ca/researchmiddleware/platforms/list/main.html
https://science.canarie.ca/researchmiddleware/platforms/list/main.html
https://www.openhub.net/
https://www.innovationpolicyplatform.org/frontpage
mailto:gdallen@illinois.edu
mailto:nick.jones@nesi.org.nz
http://www.software.ac.uk/software-credit
http://www.software.ac.uk/software-credit
https://www.force11.org/group/software-citation-working-group
https://www.force11.org/group/software-citation-working-group
https://github.com/force11/force11-scwg
https://github.com/force11/force11-scwg
http://www.ccp.ac.uk
mailto:dkgunter@lbl.gov
mailto:edavis@ucar.edu
mailto:sandra.gesing@nd.edu
mailto:j.hetherington@ucl.ac.uk
mailto:nmweber@uw.edu
mailto:birgit.penzenstadler@csulb.edu
mailto:c.venters@hud.ac.uk
mailto:gdallen@illinois.edu
mailto:nick.jones@nesi.org.nz
mailto:kyle.niemeyer@oregonstate.edu
https://github.com/codemeta/codemeta
https://depsy.org
https://www.force11.org/group/software-citation-working-group
https://www.force11.org/group/software-citation-working-group
https://www.force11.org/group/software-citation-working-group
https://www.force11.org/meetings/force2016
https://www.force11.org/meetings/force2016
mailto:sbrandt@cct.lsu.edu
mailto:dkgunter@lbl.gov
mailto:edavis@ucar.edu
http://easychair.org
http://arxiv.org/abs/1311.3523
http://dx.doi.org/10.5334/jors.an
http://arxiv.org/abs/1411.3464
http://arxiv.org/abs/1411.3464
http://arxiv.org/abs/1507.01715
http://arxiv.org/abs/1507.01715
http://dx.doi.org/10.1088/0067-0049/192/1/9
http://dx.doi.org/10.1088/0067-0049/192/1/9
http://arxiv.org/abs/1410.6968
http://dx.doi.org/10.1016/j.jvolgeores.2004.06.014
http://dx.doi.org/10.1016/j.jvolgeores.2004.06.014

Katz et al: Report on the Third Workshop on Sustainable Software for ScienceArt. e37,	p. 30	of	31	

ence at the Gates of Nature, 9: 137–142. DOI: http://
dx.doi.org/10.1016/j.jocs.2015.04.012

9. Meng, H and Thain, D. 2015 Umbrella: A Portable
Environment Creator for Reproducible Computing
on Clusters, Clouds, and Grids. In: Proceedings of the
8th International Workshop on Virtualization Tech-
nologies in Distributed Computing. VTDC ’15, New
York, NY, USA: ACM; p. 23–30. DOI: http://dx.doi.
org/10.1145/2755979.2755982

10. Meng, H, Wolf, M, Ivie, P, Woodard, A, Hildreth, M
and Thain, D. 2015 A case study in preserving a high
energy physics application with Parrot. Journal of Phys-
ics: Conference Series, 664(3): 032022. DOI: http://
dx.doi.org/10.1088/1742-6596/664/3/032022

11. Huo, D, Nabrzyski, J and Vardeman, C. 2015 An On-
tology Design Pattern towards Preservation of Compu-
tational Experiments. In: Proceedings of the 5th Work-
shop on Linked Science 2015 – Best Practices and the
Road Ahead (LISC 2015) co-located with 14th Interna-
tional Semantic Web Conference (ISWC 2015).

12. Baxter, R, Chue Hong, N, Gorissen, D,
Hetherington, J and Todorov, I. 2012 The Research
Software Engineer. In: Digital Research 2012, http://
digital-research-2012.oerc.ox.ac.uk/papers/the-re-
search-software-engineer.

13. Parr, C. 2013 Save your work – give software engi-
neers a career track. Times Higher Education, August
15; https://www.timeshighereducation.com/news/
save-your-work-give-software-engineers-a-career-
track/2006431.article.

14. Gil, Y, David, CH, Demir, I, Essawy, BT, Fulweiler,
RW, Goodall, JL, et al. 2016 Towards the Geoscience
Paper of the Future: Best Practices for Documenting
and Sharing Research from Data to Software to Prov-
enance. Earth and Space Science.

15. Duffy, CJ, David, C, Peckham, S, Venayagamoor-
thy, K and Gil, Y. Geoscience Papers of the Future: An
Introduction to the Special Issue. Earth and Space Sci-
ence, [In press], Accessible from: http://agupubs.on-
linelibrary.wiley.com/agu/issue/10.1002/(ISSN)2333-
5084(CAT)SpecialIssues(VI)GPF1/.

16. Nanthaamornphong, A and Carver, JC. 2015
Test-Driven Development in scientific software:
a survey. Software Quality Journal, pp. 1–30. Avail-
able from: DOI: http://dx.doi.org/10.1007/s11219-
015-9292-4

17. Heaton, D and Carver, JC. 2015 Claims about the
use of software engineering practices in science: A
systematic literature review. Information and Soft-
ware Technology, 67: 207–219. Available from:
http://www.sciencedirect.com/science/article/pii/
S0950584915001342. DOI: http://dx.doi.
org/10.1016/j.infsof.2015.07.011

18. Basili, VR, Carver, JC, Cruzes, D, Hochstein, LM,
Hollingsworth, JK, Shull, F, et al. 2008 Understand-
ing the High-Performance-Computing Community:
A Software Engineer’s Perspective. IEEE Software,
July; 25(4): 29–36. DOI: http://dx.doi.org/10.1109/
MS.2008.103

19. Carver, JC, Kendall, RP, Squires, SE and Post, DE.
2007 Software Development Environments for Scien-
tific and Engineering Software: A Series of Case Stud-
ies. In: 29th International Conference on Software En-
gineering (ICSE’07), pp. 550–559. DOI: http://dx.doi.
org/10.1109/ICSE.2007.77

20. Sempervirens. Accessed: 2015-11-07. https://github.
com/njsmith/sempervirens.

21. Allen, A and Schmidt, J. 2015 Looking before leaping:
Creating a software registry. Journal of Open Research
Software, 3(1): e15.

22. Ahalt, S, Berriman, B, Brown, M, Carver, J,
Chue Hong, N, Fish, A, et al. 2015 Toward a Frame-
work for Evaluating Software Success: A Proposed
First Step. In: Computational Science and Engineering
Software Sustainability and Productivity Challenges
(CSESSP) Workshop, Available from: https://www.orau.
gov/csessp2015/whitepapers/ahalt_stan.pdf.

23. Heroux, MA and Willenbring, JM. 2009 Barely suf-
ficient software engineering: 10 practices to improve
your CSE software. In: Software Engineering for Compu-
tational Science and Engineering, 2009. SECSE ’09, ICSE
Workshop on; pp. 15–21.

24. Blatt, M. 2013 DUNE as an Example of Sustainable
Open Source Scientific Software Development. arXiv;
1309.1783. http://arxiv.org/abs/1309.1783.

25. Ahern, S, Brugger, E, Whitlock, B, Meredith, JS,
Biagas, K, Miller, MC, et al. 2013 VisIt: Experiences
with Sustainable Software. arXiv; 1309.1796. http://
arxiv.org/abs/1309.1796.

26. van Vliet, H. 2008 Software Engineering: Principles
and Practice. 3rd ed. Wiley Publishing.

27. Merali, Z. 2010 Computational science: . . . Er-
ror . . . why scientific programming does not com-
pute. Nature, 467: 775–777. DOI: http://dx.doi.
org/10.1038/467775a

28. Hettrick, S, et al. 2014 UK Research Software Survey
2014; Available from: DOI: http://dx.doi.org/10.5281/
zenodo.14809

29. Becker, C, Betz, S, Chitchyan, R, Duboc, L,
Easterbrook, SM, Penzenstadler, B, et al. 2016 Re-
quirements: The Key to Sustainability. Software, IEEE.
Jan; 33(1): 56–65. DOI: http://dx.doi.org/10.1109/
MS.2015.158

30. Becker, C, Chitchyan, R, Duboc, L, Easterbrook, S,
Penzenstadler, B, Seyff, N, et al. 2015 Sustainabil-
ity Design and Software: The Karlskrona Manifesto.
In: Proc. 2015 Int’l Conf. Software Eng. (ICSE’15), DOI:
http://dx.doi.org/10.1109/icse.2015.179

31. Tate, K. 2005 Sustainable Software Development: An
Agile Perspective. Addison-Wesley Professional.

32. Bourque, P and Fairley, RE. 2014 SWEBOK, version
3.0: Guide to the Software Engineering Body of Knowl-
edge. IEEE Computer Society Press.

33. Working towards Sustainable Software for Sci-
ence: Practice and Experiences. Accessed: 2015-12-
03. http://wssspe.researchcomputing.org.uk/.

34. International Workshop on Software Engineering
for High Performance Computing in Computa-

http://dx.doi.org/10.1016/j.jocs.2015.04.012
http://dx.doi.org/10.1016/j.jocs.2015.04.012
http://dx.doi.org/10.1145/2755979.2755982
http://dx.doi.org/10.1145/2755979.2755982
http://dx.doi.org/10.1088/1742-6596/664/3/032022
http://dx.doi.org/10.1088/1742-6596/664/3/032022
http://digital-research-2012.oerc.ox.ac.uk/papers/the-research-software-engineer
http://digital-research-2012.oerc.ox.ac.uk/papers/the-research-software-engineer
http://digital-research-2012.oerc.ox.ac.uk/papers/the-research-software-engineer
https://www.timeshighereducation.com/news/save-your-work-give-software-engineers-a-career-track/2006431.article
https://www.timeshighereducation.com/news/save-your-work-give-software-engineers-a-career-track/2006431.article
https://www.timeshighereducation.com/news/save-your-work-give-software-engineers-a-career-track/2006431.article
http://agupubs.onlinelibrary.wiley.com/agu/issue/10.1002/(ISSN)2333-5084(CAT)SpecialIssues(VI)GPF1/
http://agupubs.onlinelibrary.wiley.com/agu/issue/10.1002/(ISSN)2333-5084(CAT)SpecialIssues(VI)GPF1/
http://agupubs.onlinelibrary.wiley.com/agu/issue/10.1002/(ISSN)2333-5084(CAT)SpecialIssues(VI)GPF1/
http://dx.doi.org/10.1007/s11219-015-9292-4
http://dx.doi.org/10.1007/s11219-015-9292-4
http://www.sciencedirect.com/science/article/pii/S0950584915001342
http://www.sciencedirect.com/science/article/pii/S0950584915001342
http://dx.doi.org/10.1016/j.infsof.2015.07.011
http://dx.doi.org/10.1016/j.infsof.2015.07.011
http://dx.doi.org/10.1109/MS.2008.103
http://dx.doi.org/10.1109/MS.2008.103
http://dx.doi.org/10.1109/ICSE.2007.77
http://dx.doi.org/10.1109/ICSE.2007.77
https://github.com/njsmith/sempervirens
https://github.com/njsmith/sempervirens
https://www.orau.gov/csessp2015/whitepapers/ahalt_stan.pdf
https://www.orau.gov/csessp2015/whitepapers/ahalt_stan.pdf
http://arxiv.org/abs/1309.1783
http://arxiv.org/abs/1309.1796
http://arxiv.org/abs/1309.1796
http://dx.doi.org/10.1038/467775a
http://dx.doi.org/10.1038/467775a
http://dx.doi.org/10.5281/zenodo.14809
http://dx.doi.org/10.5281/zenodo.14809
http://dx.doi.org/10.1109/MS.2015.158
http://dx.doi.org/10.1109/MS.2015.158
http://dx.doi.org/10.1109/icse.2015.179
http://wssspe.researchcomputing.org.uk/

Katz et al: Report on the Third Workshop on Sustainable Software for Science Art. e37,	p. 31	of	31	

tional Science and Engineering. Accessed: 2015-12-
03. http://se4science.org/workshops/.

35. Workshop on Software Engineering for Sustain-
able Systems. Accessed: 2015-12-03. http://sustaina-
bilitydesign.org/initiatives/se4susy/.

36. Entertainment Identifier Registry. Accessed: 2015-
10-28. http://eidr.org.

37. Katz, DS. 2014 Transitive Credit as a Means to Address
Social and Technological Concerns Stemming from Ci-
tation and Attribution of Digital Products. Journal of
Open Research Software, Sep; 2(1): e20. DOI: http://
dx.doi.org/10.5334/jors.be

38. Katz, DS and Smith, AM. 2015 Transitive Credit
and JSON-LD. Journal of Open Research Software.
3(1): e7.

39. Mayes, AC, zee-moz, Collins, A, Niemeyer, K and
Jabbari, A. 2015 Leadership-Training: “Working Open”
Guide – WSSSPE3 version; Available from: DOI: http://
dx.doi.org/10.5281/zenodo.33748

40. Bacon, J. 2009 The Art of Community. Building the
New Age of Participation.

41. Howison, J. 2015 Sustaining scientific infrastructures:
transitioning from grants to peer production (work-in-
progress). In: iConference 2015 Proceedings, http://hdl.
handle.net/2142/73439.

42. Geels, FW and Schot, J. 2007 Typology of sociotechni-
cal transition pathways. Research Policy, 36(3): 399–417.
DOI: http://dx.doi.org/10.1016/j.respol.2007.01.003

43. WSSSPE3 Software Credit Working Group. 2015
WSSSPE3 Software Credit Working Group GitHub
Issues. Accessed: 2015-10-1. https://github.com/
WSSSPE/meetings/issues/51.

44. WSSSPE3 Software Credit Working Group. 2015
WSSSPE3 Software Credit Working Group Collabora-
tive Notes. Accessed: 2015-10-1. https://docs.google.
com/document/d/1oN0ZYqIoWtOE1LBMIlWY9N8nn
5LHTncj8GjUKPh62pA.

45. CASRAI. Project Credit;. Accessed: 2015-03-31. http://
credit.casrai.org.

46. Mayes, AC. 2015 Contributorship Badges; Accessed:
2015-10-26. https://www.mozillascience.org/projects/
contributorship-badges.

47. Open Researcher and Contributor ID (ORCID). Ac-
cessed: 2015-03-31. http://orcid.org/.

48. McCall, JG, Al-Hasani, R, Siuda, ER, Hong, DY,
Norris, AJ, Ford, CP, et al. 2015 CRH Engagement
of the Locus Coeruleus Noradrenergic System Me-
diates Stress-Induced Anxiety. Neuron, Aug; 87(3):
605–620. DOI: http://dx.doi.org/10.1016/j.neu-
ron.2015.07.002

49. Lin, IC, Okun, M, Carandini, M and Harris, KD. 2015
The Nature of Shared Cortical Variability. Neuron, Aug;
87(3): 644–656. DOI: http://dx.doi.org/10.1016/j.
neuron.2015.06.035

50. Howison, J and Bullard, J. 2015 Software in the sci-
entific literature: Problems with seeing, finding, and
using software mentioned in the biology literature.
Journal of the Association for Information Science and
Technology, In press, available at DOI: http://dx.doi.
org/10.1002/asi.23538

51. Brin, S and Page, L. 1998 The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7): 107–117.

52. SIG SP. 2015 Astronomy software citation examples
and ideas. Accessed: 2015-10-29. https://docs.google.
com/document/d/1q9ULl7alA3veL7Qwg7jGteRWeJw
lrkvRHSXjvt-rTs0.

53. Data Citation Synthesis Group. Martone M, editor.
2014 Joint Declaration of Data Citation Principles.
San Diego, CA: FORCE11. Accessed: 2015-10-28.
https://www.force11.org/group/joint-declaration-da-
ta-citation-principles-final.

54. Zenodo. Accessed: 2015-10-28. https://zenodo.org.
55. Figshare. Accessed: 2014-02-03. https://figshare.com.
56. IPython. 2015 A gallery of interesting IPython Note-

books. Accessed: 2015-10-28. https://github.com/ipy-
thon/ipython/wiki/A-gallery-of-interesting-IPython-
Notebooks#reproducible-academic-publications.

How to cite this article: Katz,	D	S,	Choi,	S-C	T	,	Niemeyer,	K	E,	Hetherington,	J,	Löffler,	F,	Gunter,	D,	Idaszak,	R,	Brandt,	S	R,	
Miller, M A, Gesing, S, Jones, N D, Weber, N, Marru, S, Allen, G, Penzenstadler, B, Venters, C C, Davis, E, Hwang, L, Todorov, I,
Patra, A and de Val-Borro, M 2016 Report on the Third Workshop on Sustainable Software for Science: Practice and Experiences
(WSSSPE3). Journal of Open Research Software, 4: e37, DOI: http://dx.doi.org/10.5334/jors.118

Submitted: 06 February 2016 Accepted: 05 September 2016 Published: 21 October 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution	4.0	International	License	(CC-BY	4.0),	which	permits	unrestricted	use,	distribution,	and	reproduction	in	any	medium,	
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://se4science.org/workshops/
http://sustainabilitydesign.org/initiatives/se4susy/
http://sustainabilitydesign.org/initiatives/se4susy/
http://eidr.org
http://dx.doi.org/10.5334/jors.be
http://dx.doi.org/10.5334/jors.be
http://dx.doi.org/10.5281/zenodo.33748
http://dx.doi.org/10.5281/zenodo.33748
http://hdl.handle.net/2142/73439
http://hdl.handle.net/2142/73439
http://dx.doi.org/10.1016/j.respol.2007.01.003
https://github.com/WSSSPE/meetings/issues/51
https://github.com/WSSSPE/meetings/issues/51
https://docs.google.com/document/d/1oN0ZYqIoWtOE1LBMIlWY9N8nn5LHTncj8GjUKPh62pA
https://docs.google.com/document/d/1oN0ZYqIoWtOE1LBMIlWY9N8nn5LHTncj8GjUKPh62pA
https://docs.google.com/document/d/1oN0ZYqIoWtOE1LBMIlWY9N8nn5LHTncj8GjUKPh62pA
http://credit.casrai.org
http://credit.casrai.org
https://www.mozillascience.org/projects/contributorship-badges
https://www.mozillascience.org/projects/contributorship-badges
http://orcid.org/
http://dx.doi.org/10.1016/j.neuron.2015.07.002
http://dx.doi.org/10.1016/j.neuron.2015.07.002
http://dx.doi.org/10.1016/j.neuron.2015.06.035
http://dx.doi.org/10.1016/j.neuron.2015.06.035
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1002/asi.23538
https://docs.google.com/document/d/1q9ULl7alA3veL7Qwg7jGteRWeJwlrkvRHSXjvt-rTs0
https://docs.google.com/document/d/1q9ULl7alA3veL7Qwg7jGteRWeJwlrkvRHSXjvt-rTs0
https://docs.google.com/document/d/1q9ULl7alA3veL7Qwg7jGteRWeJwlrkvRHSXjvt-rTs0
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://zenodo.org
https://figshare.com
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications
http://dx.doi.org/10.5334/jors.118
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Calls for Participation
	3. Keynote
	4. Lightning Talks
	5. Working Groups: Summaries
	5.1 White paper/journal paper about best practices in developing sustainable software
	5.1.1 Fit with related activities
	5.1.2 Discussion
	5.1.3 Plans
	5.1.4 Landing Page

	5.2 Funding Research Programmer Expertise
	5.2.1 Fit with related activities
	5.2.2 Discussion
	5.2.3 Plans
	5.2.4 Landing Page

	5.3 Transition Pathways to Sustainable Software: Industry & Academic Collaboration
	5.3.1 Fit with related activities
	5.3.2 Discussion
	5.3.3 Plans
	5.3.4 Landing Page

	5.4 Legacy Software
	5.5 Principles for Software Engineering Design for Sustainable Software
	5.5.1 Fit with related activities
	5.5.2 Discussion
	5.5.3 Plans
	5.5.4 Landing Page

	5.6 Useful Metrics for Scientific Software
	5.6.1 Fit with related activities
	5.6.2 Discussion
	5.6.3 Plans
	5.6.4 Landing Page

	5.7 Training
	5.7.1 Fit with related activities
	5.7.2 Discussion
	5.7.3 Plans
	5.7.4 Landing Page

	5.8 Software Credit Working Group
	5.8.1 Fit with related activities
	5.8.2 Discussion
	5.8.3 Plans
	5.8.4 Landing Page

	5.9 Publishing Software Working Group Discussion
	5.9.1 Fit with related activities
	5.9.2 Discussion
	5.9.3 Plans
	5.9.4 Landing Page

	5.10 Building Sustainable User Communities for Scientific Software
	5.10.1 Fit with related activities
	5.10.2 Discussion
	5.10.3 Plans
	5.10.4 Landing Page

	6. Working Groups: Details
	6.1 Best Practices Group Discussion
	6.1.1 Group Members
	6.1.2 Summary of Discussion
	6.1.3 Description of Opportunity, Challenges, and Obstacles
	6.1.4 Key Next Steps
	6.1.5 Plan for Future Organization
	6.1.6 What Else is Needed?
	6.1.7 Key Milestones and Responsible Parties
	6.1.8 Description of Funding Needed

	6.2 Funding Research Programmer Expertise Group Discussion
	6.2.1 Group Members
	6.2.2 Summary of Discussion
	6.2.3 Key Next Steps
	6.2.4 Plan for Future Organization and Future Needs
	6.2.5 Description of Funding Needed

	6.3 Transition Pathways to Sustainable Software: Industry
	6.3.1 Group Members
	6.3.2 Summary of Discussion
	6.3.3 Description of Opportunity, Challenges, and Obstacles
	6.3.4 Key Next Steps
	6.3.5 Plan for Future Organization
	6.3.6 What Else is Needed?
	6.3.7 Key Milestones and Responsible Parties
	6.3.8 Description of Funding Needed

	6.4 Engineering Design Group Discussion
	6.4.1 Group Members
	6.4.2 Summary of Discussion
	6.4.3 Description of Opportunity, Challenges, and Obstacles
	6.4.4 Key Next Steps
	6.4.5 Plan for Future Organization
	6.4.6 What Else is Needed?
	6.4.7 Key Milestones and Responsible Parties
	6.4.8 Description of Funding Needed

	6.5 Metrics Working Group Discussion
	6.5.1 Group Members
	6.5.2 Summary of Discussion
	6.5.3 Description of Opportunity, Challenges, and Obstacles
	6.5.4 Key Next Steps
	6.5.5 Plan for Future Organization
	6.5.6 What Else is Needed?
	6.5.7 Key Milestones and Responsible Parties
	6.5.8 Description of Funding Needed

	6.6 Training Working Group Discussion
	6.6.1 Group Members
	6.6.2 Summary of Discussion
	6.6.3 Description of Opportunity, Challenges, and Obstacles
	6.6.4 Key Next Steps
	6.6.5 Plan for Future Organization
	6.6.6 What Else is Needed?
	6.6.7 Key Milestones and Responsible Parties
	6.6.8 Description of Funding Needed

	6.7 Software Credit Working Group Discussion
	6.7.1 Group Members
	6.7.2 Summary of Discussion
	6.7.3 Description of Opportunity, Challenges, and Obstacles
	6.7.4 Key Next Steps
	6.7.5 Plan for Future Organization
	6.7.6 What Else is Needed?
	6.7.7 Key Milestones and Responsible Parties
	6.7.8 Description of Funding Needed

	6.8 Publishing Software Working Group Discussion
	6.8.1 Group Members
	6.8.2 Summary of Discussion
	6.8.3 Description of Opportunity, Challenges, and Obstacles
	6.8.4 Key Next Steps
	6.8.5 Plan for Future Organization
	6.8.6 What Else is Needed?
	6.8.7 Key Milestones and Responsible Parties
	6.8.8 Description of Funding Needed

	6.9 User Community Working Group Discussion
	6.9.1 Group Members
	6.9.2 Summary of Discussion
	6.9.3 Description of Opportunity, Challenges, and Obstacles
	6.9.4 Key Next Steps
	6.9.5 Plan for Future Organization
	6.9.6 What Else is Needed?
	6.9.7 Key Milestones and Responsible Parties
	6.9.8 Description of Funding Needed

	7. Conclusions
	Acknowledgments
	Supplementary Files
	Competing Interests
	Notes
	References

